
## A sustainable biomass adhesive based on the biomimetic "seaisland" structure, featuring boiling water resistance and antibacterial properties

Ming Wei,<sup>a</sup> Yijun Zong,<sup>c</sup> Yuyan Jiang,<sup>a</sup> Desen Meng,<sup>c</sup> Liangxian Liu,<sup>a</sup> Shaoliang Xiao $^*a,b$  and Jian Li $^*a,b$ 

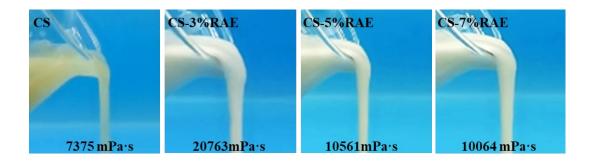
- <sup>a</sup> Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, P.R. China
- <sup>b</sup> Engineering Research Center of Advanced Wooden Materials (Ministry of Education), Northeast Forestry University, Harbin, P.R. China
- <sup>c</sup> Shandong Xingang Enterprise Group Co., Ltd, Shandong, P.R. China

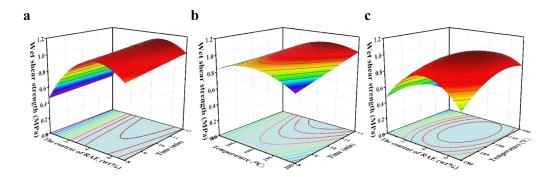
\* Email: shaoliangxiao@nefu.edu.cn

\* Email: nefulijian@163.com



**Fig. S1.** The wet strength in boiling water of CS-5%RAE adhesives with different reaction time.





Fig. S2. The viscosity of CS-based adhesives with different RAE addition amounts.

**Table. S1.** The detailed components of CS and CS-RAE adhesive.

| Sample   | CS powder (g) | Acetic acid (g) | RAE (g) | Deionized water (mL) |
|----------|---------------|-----------------|---------|----------------------|
| CS       | 5             | 1               | 0       | 94                   |
| CS-3%RAE | 5             | 1               | 3       | 91                   |
| CS-5%RAE | 5             | 1               | 5       | 89                   |
| CS-7%RAE | 5             | 1               | 7       | 87                   |

**Table. S2.** The detailed data of TG, DTG, and DSC curves of chitosan adhesives with different contents of RAE.

|          | TG                   |                       |                             | DTG                   | DSC                 |                     |                      |
|----------|----------------------|-----------------------|-----------------------------|-----------------------|---------------------|---------------------|----------------------|
| Sample   | T <sub>5%</sub> (°C) | T <sub>50%</sub> (°C) | Residue<br>at 500<br>°C (%) | T <sub>max</sub> (°C) | T <sub>g</sub> (°C) | T <sub>m</sub> (°C) | T <sub>cc</sub> (°C) |
| CS       | 116.<br>5            | 341.7                 | 38.56                       | 290.2                 | 125.7               | 306.8               | /                    |
| CS-3%RAE | 113.<br>8            | 361.2                 | 35.28                       | 294.4                 | 116.6               | 328.6               | 447.8                |
| CS-5%RAE | 110.<br>5            | 358.9                 | 35.83                       | 295.4                 | 112.7               | 324.3               | 447.5                |
| CS-7%RAE | 113.<br>6            | 366.7                 | 35.90                       | 290.4                 | 110.3               | 327.1               | 443.7                |



**Fig. S3.** The effects of hot-pressing time, temperature, and the content of RAE on wet bonding strength in boiling water were investigated by using the response surface test method. The influence of (a) hot-pressing time and the content of RAE, (b) hot-pressing time and hot-pressing temperature, and (c) the content of RAE and hot-pressing temperature on bonding strength.

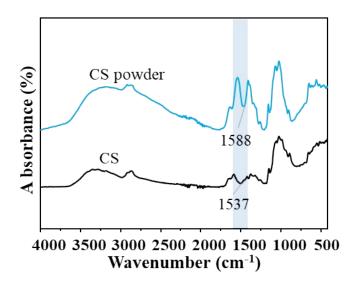
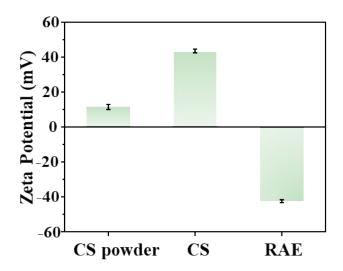
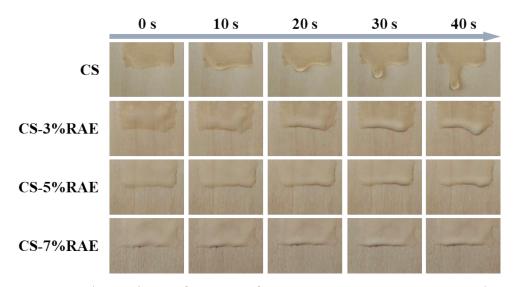
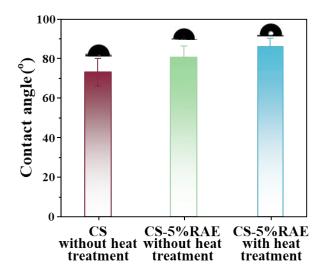
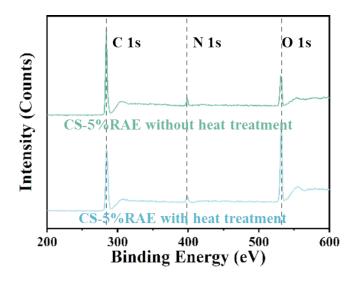



Fig. S4. FTIR spectra of CS powder and CS.



Fig. S5. The Zeta potential of CS powder, CS and RAE.

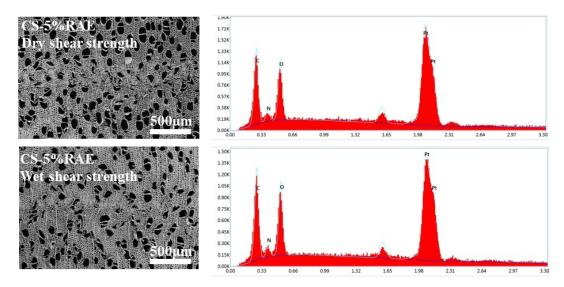


**Fig. S6.** The coating performance of CS, CS-3%RAE, CS-5%RAE, and CS-7%RAE, respectively.



**Fig. S7.** The contact angle of (a) CS adhesive film without heat treatment, (b) CS-5%RAE adhesive film without heat treatment and (c) CS-5%RAE adhesive film with heat treatment, respectively.




**Fig. S8.** The XPS survey spectra of CS-5%RAE without heat treatment and CS-5%RAE with heat treatment.

**Table. S3.** The detailed data of high- resolution XPS C1s spectra of CS, CS-5%RAE without heat treatment, and CS-5%RAE with heat treatment, respectively.

| Sample                          | 284.8 eV               | 286.4 eV   | 288.1 eV   |
|---------------------------------|------------------------|------------|------------|
| CS                              | C-C/C-<br>H:49.52%     | C-N:39.01% | C-O:11.47% |
| CS-5%RAE without heat treatment | C-C/C=C/C-<br>H:70.61% | C-N:24.23% | C-O:5.16%  |
| CS-5%RAE with heat treatment    | C-C/C=C/C-<br>H:42.49% | C-N:46.35% | C-O:11.16% |

**Table. S4.** Results of the multiplication of the signs of each cross-peak in 2D COS synchronous and asynchronous spectra of CS-RAE.

| 1148                           | -    | +    |      |
|--------------------------------|------|------|------|
| 1730                           | -    |      | -    |
| 3380                           |      | +    | +    |
| Wavenumber (cm <sup>-1</sup> ) | 3380 | 1730 | 1148 |



**Fig. S9.** SEM and EDS of the cross-sections of dry glued laminated timber and wet glued laminated timber immersed in boiling water.



**Fig. S10.** The appearance diagrams of CS-RAE respectively applied to birch, eucalyptus and poplar plywood.