Supporting Information

Eliminating Low-Crystalline Defects in Spent Graphite Anodes via Low-Temperature Molten Salt Activation and Controlled Oxidation

Zikun Mai^{a,b}, Yuhao Ge^{a,b}, Yuan Feng^b, Kai Luo^b, Hao Zhang^b, Meng Huang^{*a,b}, Jiashen Meng^{*b,c,e}, Xuanpeng Wang^{*a,c,d,e}

- a. Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China.
- b. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
- c. Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, China.
- d. Department of Physical Science and Technology, School of Physics and Mechanics, Wuhan University of Technology, Wuhan 430070, China.
- e. Zhongyu Feima New Material Technology Innovation Center (Zhengzhou) Co., Ltd., Zhengzhou 450001, China.
- f. Supplementary Information available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

The calculation of lithium-ion diffusion coefficient (D_{Li}^+):

$$I_p = 269000n^{3/2}ACD^{1/2}V^{1/2}$$
(1)
$$k = I_p/V^{1/2}$$
(2)
$$D_{Li}^{+} = (\frac{k}{269000n^{3/2}AC})^2$$
(3)

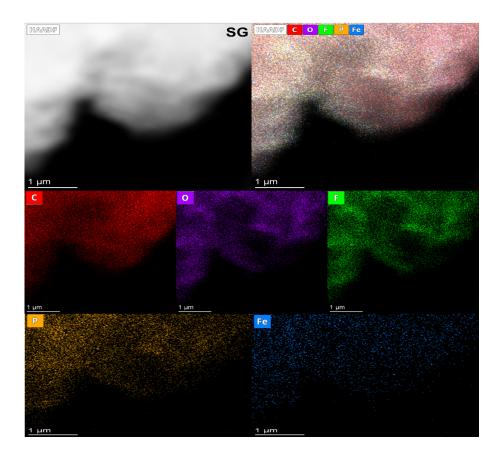


Fig. S1. TEM energy spectrum characterization of SG.

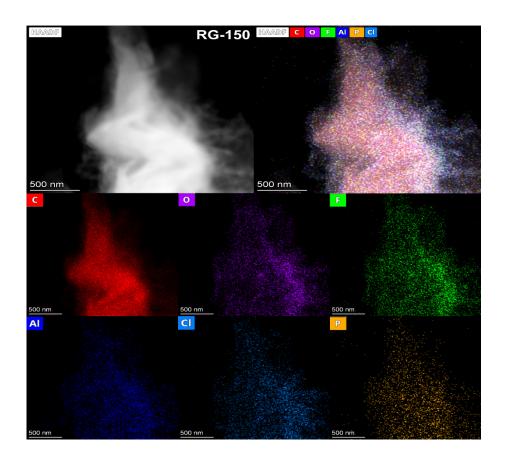


Fig. S2. TEM energy spectrum characterization of RG-150.

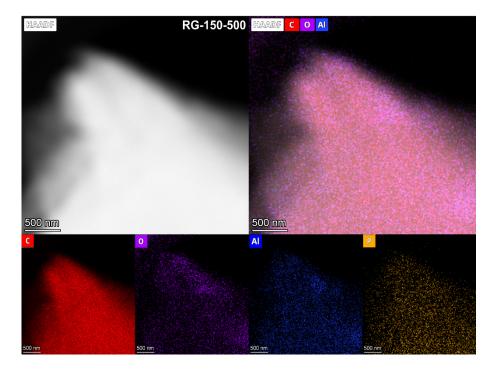


Fig. S3. TEM energy spectrum characterization of RG-150-500.

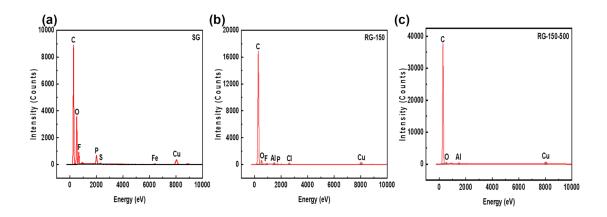
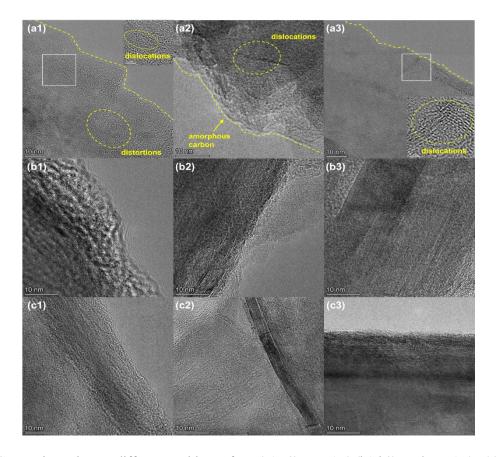
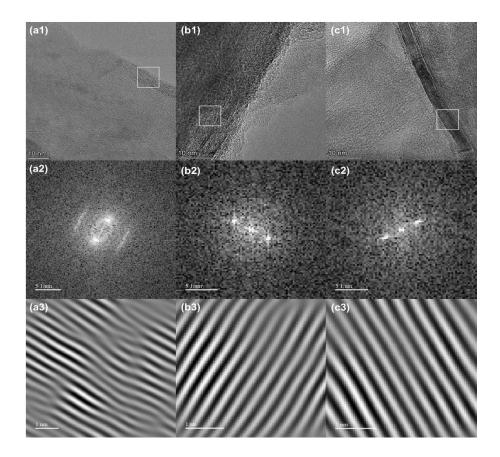




Fig. S4. TEM elemental spectrum of (a) SG, (b) RG-150, and (c) RG-150-500.

Fig. S5. Lattice stripes at different positions of SG (a1-a3), RG-150 (b1-b3), and RG-150-500 (c1-c3).

 $\textbf{Fig. S6.} \ Lattice \ stripes \ and \ FFT \ of \ SG \ (a1-a3), \ RG-150 \ (b1-b3), \ and \ RG-150-500 \ (c1-c3).$

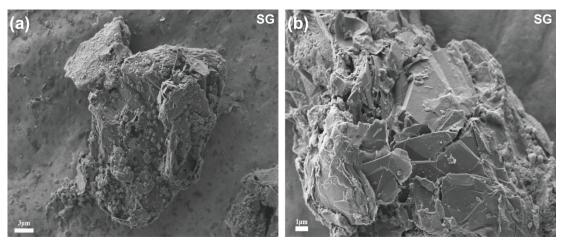


Fig. S7. SEM images of SG.

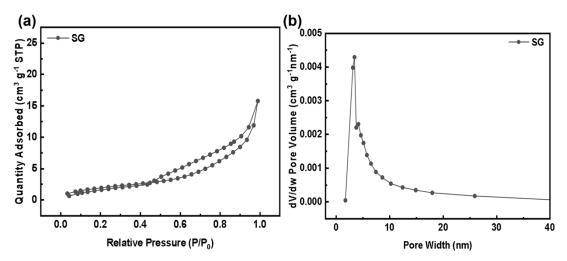


Fig. S8. (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution of SG.

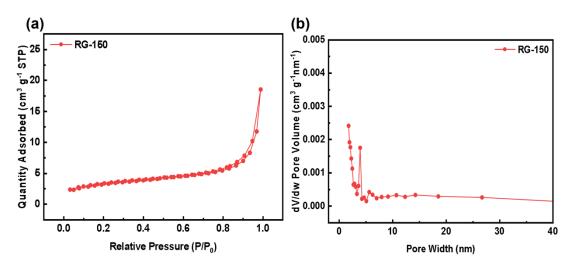
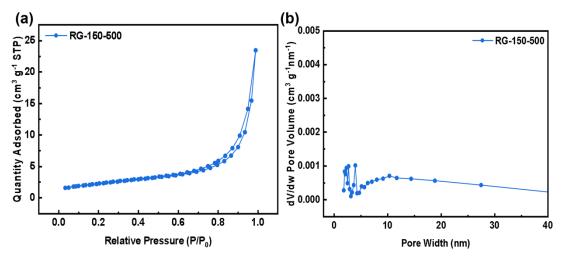



Fig. S9. (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution of RG-150.

Fig. S10. (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution of RG-150-500.

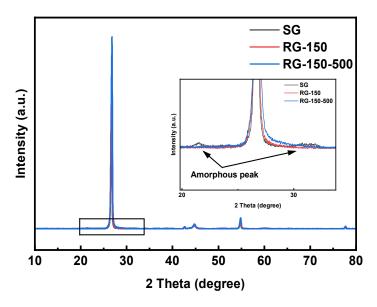


Fig. S11. The XRD patterns of SG, RG-150, and RG-150-500 samples.

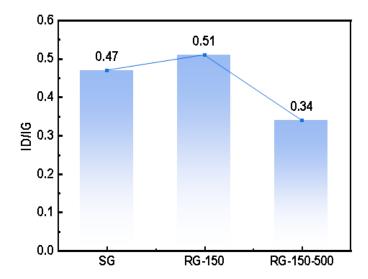
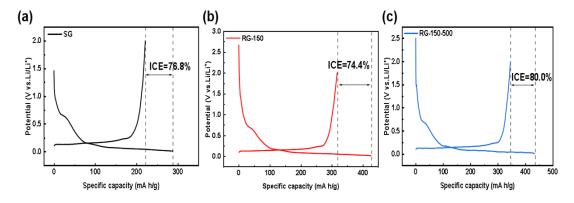



Fig. S12. Comparison of I_D/I_G values for SG, RG-150, and RG-150-500.

Fig. S13. The initial charging/discharging profiles of (a) SG, (b) RG-150, and (c) RG-150-500 at 0.2C.

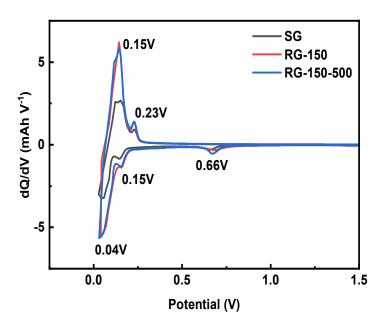


Fig. S14. dQ/dV curves of SG, RG-150, and RG-150-500 during first cycle at 0.2C.

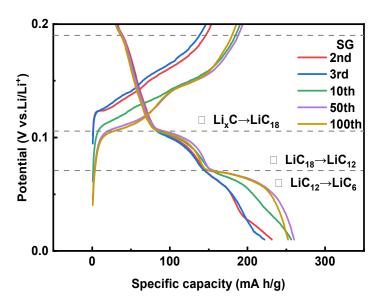


Fig. S15. The constant current charge-discharge curve of SG from 0 to 0.2V at 0.2C.

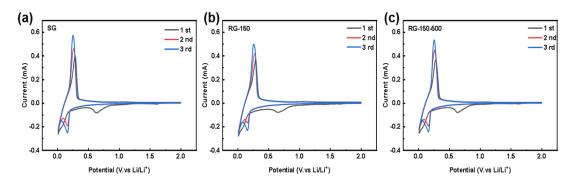


Fig. S16. CV curves for the first three cycles of (a) SG, (b) RG-150, and (c) RG-150-500.

Table S1. EA test results of SG, RG-150, and RG-150-500.

Sample	C (at%)	H (at%)	N (at%)	S (at%)
SG	87.82	11.92	0.14	0.08
RG-150	94.27	5.55	0.13	0.05
RG-150-500	96.04	3.80	0.13	0.03

Table S2. ICP-OES test results of SG, RG-150, and RG-150-500.

Sample	Li (ppm)	P (ppm)	Fe (ppm)
SG	54.624	16.771	3.673
RG-150	0.409	2.774	0.780
RG-150-500	0.194	1.788	0.398

Table S3. Comparison of element content by TEM-EDS.

Sample	C (at%)	O (at%)	F (at%)	P (at%)	S (at%)	Fe (at%)	Al (at%)	Cl (at%)	Si (at%)
SG	74.81	17.54	3.74	2.06	0.18	0.16	/	/	/
RG- 150	95.99	1.97	0.16	0.04	0.02	/	0.51	0.40	0.09
RG- 150- 500	98.33	0.62	/	0.05	/	/	0.24	/	0.03

Table S4. BET test for different graphite powders.

Sample	Surface area (m ² /g)	Pore Size (nm)
SG	8.82	3.44
RG-150	11.44	3.92
RG-150-500	8.14	3.96

Table S5. The positions and intensities of the first five main peaks of SG, RG-150, and RG-150-500 through the PDF method.

		SG	RG-150	RG-150-500
First peak	Position (Å)	1.44	1.44	1.44
	Intensity (Å-2)	5.97	7.33	8.46
Second peak	Position (Å)	2.46	2.46	2.46

	Intensity (Å-2)	6.76	6.95	8.42
	Position (Å)	3.72	3.70	3.72
Third peak	Intensity (Å-2)	5.25	5.68	6.45
Forth peak	Position (Å)	4.26	4.20	4.26
	Intensity (Å-2)	5.27	5.58	6.60
E:Oh maale	Position (Å)	5	5	5
Fifth peak	Intensity (Å-2)	6.78	8.08	9.98

Table S6. Intensity data of Raman by Origin fitting.

Sample	I _D (D-band area)	I _G (G-band area)	I_D/I_G	R ²
SG	3062.4813	6577.7231	0.4656	0.9429
RG-150	13225.5790	25972.4602	0.5092	0.9778
RG-150-500	11807.4176	34252.6789	0.3447	0.9473

Table S7. The influence of defects on the electrochemical properties of graphite.

Sample	C-F	C=O	C-C	1C (mAh g ⁻¹)	0.2C (mAh g ⁻¹)	ICE (1C)	ICE (0.2C)
SG	15.3%	18.6%	31.7%	152.5	287.9	64.6%	76.8%
RG-150	7.8%	18.3%	39.7%	342.3	426.9	71.3%	74.4%
RG-150- 500	6.9%	8.0%	50.5%	399.4	434.2	81.0%	80.0%

Table S8. The influence of graphite purity (TEM-EDS) on electrochemical performance.

Sample	C (at%)	1C (mAh g ⁻¹)	After 250 cycles	ICE (1C)	0.2C (mAh g ⁻¹)	After 250 cycles	ICE (0.2C)
SG	74.81	152.5	212.2	64.6%	287.9	232.9	76.8%
RG-150	95.99	342.3	232.0	71.3%	426.9	259.0	74.4%
RG-150- 500	98.33	399.4	316.5	81.0%	434.2	360.8	80.0%

Table S9. Comparison of electrochemical properties of recycled graphite

Method	Performance	Ref.
H ₂ SO ₄ curing-	The initial charge capacity is 349 mAh g	1
calcination at 1500 °C	¹ at 0.1C	i

H ₂ SO ₄ -H ₂ O ₂ leaching combined with NaOH calcination	discharge capacity of 377.3 mAh g ⁻¹ at 0.1 C, and 359.3 mAh g ⁻¹ at 0.2C	2
H ₂ SO ₄ leaching combined with	Initial discharging capacity of 358 mAh g	3
Co(NO ₃) ₂ catalyze	¹ at 0.1C	
Calcination from 2000	Initial discharging capacity of 346.3 mAh g	4
°C to 2800 °C	¹ at 0.1C	•
ammonium fluoride roasting	Initial discharging capacity of 340.9 mAh g	5
and water leaching	¹ at 0.1C	3
KOH-NaOH composite alkali	Initial discharging capacity of 320-340	6
etching	mAh g ⁻¹ at 0.1C	O
HCl leaching combined with asphalt coating	discharging capacity of 355 mAh g ⁻¹ at 1C	7
Reconstruction of layered carbon coating using magnesium catalyst at 900 °C	Initial discharging capacity of 398 mAh g ⁻¹ at 0.1C	8
LTMS-calcination	Initial discharge capacity of 399.4 mAh g ⁻¹ at 1C, and 434.2 mAh g ⁻¹ at 0.2C	Our work

Table S10. Fitting data of pre cycle electrical impedance spectroscopy (EIS) test.

Sample	SG	RG-150	RG-150-500
$\mathrm{Rs}(\Omega)$	8.269	7.572	7.759
$\mathrm{Rct}(\Omega)$	387.06	192.90	160.50

Table S11. Fitting data of electrical impedance spectroscopy (EIS) test after 200 cycles.

Sample	SG	RG-150	RG-150-500
$\mathrm{Rs}(\Omega)$	8.938	5.851	5.719
$\mathrm{Rct}(\Omega)$	22.162	18.296	15.154
$R_{SEI}(\Omega)$	5.709	6.777	4.923

Table S12. Total cost of recycled graphite

	Hydrometallurg y	Pyrometallurgy(2000-3000°C)	LTMS- calcination	Data source
Materials cost (\$/kg)	3.753	0	0.897	СВ

Energy cost (\$/kg)	4.463	9.563	6.545	ISM 、BD
Total cost (\$/kg	8.216	9.563	7.442	
Profit (\$/kg)	1.784	0.437	2.558	

Hydrometallurgy:

It was soaked with 5 M sulfuric acid and 35 w/w % $\rm H_2O_2$ at room temperature. The mixture was stirred in a beaker with a mechanical stirrer for 1 hour. Subsequently, the mixture was taken out, and calcination experiments were carried out in a tube furnace. The roasted material was leached in sulfuric acid solution. Then centrifuged, washed, and dried. Finally, the graphite after re-leaching treatment was sintered with NaOH powder at 500 °C for 2 h, washed with DI water, and dried again.

Energy consumption of mechanical agitators: 0.5 kW * 1 h = 0.5 kW hEnergy consumption of tube furnace: 6 kW * 4 h + 6 kW * 2 h = 36 kW hEnergy consumption of the drying oven: 1 kW * 8 h + 1 kW * 8 h = 16 kW hTotal energy cost: $(0.5+36+16) \text{ kW} \text{ h} * \$ 0.085 \text{ kWh}^{-1} \approx \$ 4.4625$

CB: https://www.chemicalbook.com/. ISM: https://www.instrument.com.cn

BD: https://www.baidu.com/

Pyrometallurgy:

The obtained spent graphite samples (SG) were heat-treated in a tube furnace at 500 °C for 4 hours, and impurities were removed by washing and drying. The SG was then ground using a planetary ball mill until it passed a 400 mesh sieve. The samples were placed in a tube furnace for the heat treatment process under an Ar atmosphere. The samples were individually heated to 2800 °C, kept at that temperature for 12 h, and cooled to room temperature to obtain regenerated graphite (RG).

Energy consumption of tube furnace : 6 kW * 4 h + 6 kW * 12 h = 96 kW h Energy consumption of the drying oven: 1 kW * 12 h = 12 kW h Energy consumption of ball mill: 0.75 kW * 6 h = 4.5 kW h Total energy cost: $(96+12+4.5) \text{ kW} \text{ h} * \$ 0.085 \text{ kWh}^{-1} \approx \$ 9.5625$

LTMS-calcination:

Muffle Furnace Energy Consumption: 2.5 kW * 24 h + 2.5 kW * 2 h = 65 kW h Energy consumption of the drying oven: 1 kW * 12 h = 12 kW h Total energy cost: (65+12) kW h * \$0.085 kWh⁻¹ \approx \$6.545

References

- 1. Y. Gao, C. Wang, J. Zhang, Q. Jing, B. Ma, Y. Chen and W. Zhang, *ACS Sustainable Chemistry & Engineering*, 2020, **8**, 9447-9455.
- 2. X. Ma, M. Chen, B. Chen, Z. Meng and Y. Wang, ACS Sustainable Chemistry & Engineering, 2019, 7, 19732-19738.
- 3. Q. Chen, L. Huang, J. Liu, Y. Luo and Y. Chen, Carbon, 2022, 189, 293-304.
- 4. G.-Q. Yu, M.-Z. Xie, Z.-H. Zheng, Z.-G. Wu, H.-L. Zhao and F.-Q. Liu, *Resources, Conservation and Recycling*, 2023, **199**, 107267.
- 5. X. Zhu, J. Xiao, Q. Mao, Z. Zhang, Z. You, L. Tang and Q. Zhong, *Chemical Engineering Journal*, 2022, 430, 132703.
- 6. H. Da, M. Gan, D. Jiang, C. Xing, Z. Zhang, L. Fei, Y. Cai, H. Zhang and S. Zhang, *ACS Sustainable Chemistry & Engineering*, 2021, **9**, 16192-16202.
- 7. K. Chen, Y. Ding, L. Yang, Z. Wang, H. Yu, D. Fang, Y. Feng, L. Hu, C. Xu, P. Shao, X. Luo and L. Chen, *Resources, Conservation and Recycling*, 2024, **201**, 107326.
- 8. S. Luo, F. Liu, W. Tianxu, Y. Liu, C. Zhang, C. Bie, M. Liu, P. K. Chu, K. Huo and B. Gao, *Energy Storage Materials*, 2024, **73**, 103833.