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General Method

All solvents and chemicals were directly used without further purification. Powder X-ray
diffraction (PXRD) spectra were performed by Bruker D8 diffractometer. Flourier transform
infrared spectroscopy (FT-IR) was measured on a Bruker Equinox 55 using the KBr pellet in the
range of 4000-400 cm!. Thermogravimetric analyses (TGA) were carried out on a Hitachi STA200
simultaneous thermal analyzer at a heating rate of 10 °C/min from room temperature to 800 °C in
N, atmosphere. BET surface area has been recorded using nitrogen sorption data at 77 K with a
volumetric adsorption setup (Micromeritics ASAP 2460 instruments). CO, adsorption-desorption
isotherm measurements on a Quantachrome Autosorb-iQ at 273 K and 298 K. '"H NMR spectra
were recorded on Bruker AVANCE III HD 600 spectrometer (Bruker BioSpin, Rheinstetten,
Germany). Inductively coupled plasma—optical emission spectroscopy (ICP—OES) analysis was
measured by PerkinElmer Optima 8000. Single-crystal XRD data of crystal was measured on a
Bruker APEX II CCD diffractometer with graphite-monochromated Mo Ka radiation (A = 0.71073
A) at 296 K. The MOFs structure is solved directly by structural solvers Olex2 ! and SIR2004 2 and
refined with the ShelXL 3 refinement package using Least Squares minimization. The detailed
crystallographic information of the crystal was listed in Table S1. The selected bond distances and
bond angles were listed in Table S2. The CCDC number of MOFs 1 and 2 are 2470183 and 2470184,
respectively. These data can be obtained from the CCDC via www.ccdc.cam.ac.uk/data_request/cif.
The ligand H,L! (5-(1H-1,2,4-triazol-1-yl)isophthalic acid) and H,L? (5-(1H-imidazol-1-
yl)isophthalic acid) were synthesized according to the reported procedure and the ligands structure
are shown in Scheme S1.4
Synthesis of MOF 1 ({[Fe,L!,(H,0)4]-H,0}, (1))
FeSO,4-7H,0 (0.0278 g, 0.1 mmol) and H,L! (0.02332 g, 0.1 mmol) mixed solvents Vyso:
Venscmzon : Voma = 5:3:2) were added to a 20 mL Teflon-lined stainless-steel autoclave, heated at
160 °C for 12 h, then cooled to room temperature. The yellow massive crystals were collected by
filtration and washed with methanol (calcd 41% yield based on ligand H,L!"). IR (KBr, cm™):
3145(w), 1625(s, COO"), 1582(s, Ph C=C), 1545(m, triazole C=N), 1485(m), 1434(s), 1378(s),
1352(w, COO"), 1294(w), 1214(m), 1145(m), 1076(m), 984(m), 900(m), 771(m), 750(m), 721(m),
668(m), 526(w)(Fe-N/Fe-O) (Fig. S2a).

Synthesis of MOF 2 ([FeL?(H,0),], (2))



FeSO4 7H,0 (0.0278 g, 0.1 mmol) and H,L2 (0.02322 g, 0.1 mmol) mixed solvents Viyo:
Venscmon : Voma = 7:4:5) were added to a 20 mL Teflon-lined stainless-steel autoclave, heated at
160 °C for 12 h, then cooled to room temperature. The gellow massive crystals were collected by
filtration and washed with methanol (caled 31% yield based on ligand H,L?). IR (KBr, cm™):
3140(w), 1633(s, COO"), 1582(s, imidazole C=N), 1535(w, Ph C=C), 1471(w), 1430(m), 1381(s,
COO"), 1313(w), 1265(m), 1173(w), 1072(s), 945(m), 898(w), 775(s), 744(s), 717(s), 650(w),
523(w)(Fe-N/Fe-0) (Fig. S2a).

Table S1. Crystallographic data and structure refinement details for MOFs 1 and 2.

Data. MOF 1 MOF 2
Formula CroHyoFeaNgO 13 C1HpFeN,Oq
Mr 664.12 324.06
crystal system Monoclinic Monoclinic
space group C2/c P2,/c
a(A) 19.612(16) 10.758(2)
b (A) 10.811(7) 16.767(4)
c(A) 13.532(11) 7.3771(17)
a () 90 90
B () 123.86(3) 95.384(14)
v (°) 90 90
V(A3) 2383(3) 1324.8(5)
Z 4 4
Peale (Mg/m3) 1.851 1.615
i (mm) 1.303 9.410
F(000) 1352 656.0
0 range(°) 2.261-25.078 8.256-133.714
Reflns collected 19749 2327
GOF on F? 1.227 0.954
R2/wRb 0.0387/0.1284 0.1218/0.2793




Table S2. Selected bond distances (A) and angles (°) for MOFs 1 and 2.

MOF 1
Fe(1)-0(3) 2.019(3) Fe(1)-O(1)#2 2.229(3)
Fe(1)-N3)#1 2.161(3) N(3)-Fe(1)#3 2.161(3)
Fe(1)-0(5) 2.181(3) O(1)-Fe(1)#4 2.229(3)
Fe(1)-0(6) 2.181(3) 0(2)-Fe(1)#4 2.206(3)
Fe(1)-O(2)#2 2.206(3) N(3)#1-Fe(1)-0(2)#2 146.48(11)
O(3)-Fe(1)-N(3)#1 94.69(13) 0(5)-Fe(1)-O(2)#2 88.30(12)
0(3)-Fe(1)-0(5) 87.90(12) 0(6)-Fe(1)-0(2)#2 88.29(12)
N(3)#1-Fe(1)-0(5) 95.82(12) 0(3)-Fe(1)-O(1)#2 175.62(11)
0(3)-Fe(1)-0(6) 92.95(12) N(3)#1-Fe(1)-O(1)#2 87.82(12)
N(3)#1-Fe(1)-0(6) 87.52(13) 0(5)-Fe(1)-O(1)#2 88.28(11)
0(5)-Fe(1)-0(6) 176.48(10) 0(6)-Fe(1)-O(1)#2 90.73(12)
0(3)-Fe(1)-0Q2)#2 118.73(11) O(2)#2-Fe(1)-O(1)#2 58.99(10)
MOF 2
Fe(1)-(N2)#1 2.101(8) Fe(1)-(06) 2.067(7)
Fe(1)-(02) 2.067(7) N(2)-Fe(1)#3 2.101(8)
Fe(1)-(03)#2 2.357(7) O(3)-Fe(1)#4 2.357(7)
Fe(1)-(O4)#2 2.182(7) O(4)-Fe(1)#4 2.182(7)
Fe(1)-(05) 2.071(7) (O4)#2-Fe(1)-(03)#2 57.7(2)
(N2)#1- Fe(1)-(03)#2 151.7(3) (05)-Fe(1) (N2)#1 95.6(3)
(N2)#1-Fe(1)-(04)#2 94.1(3) (05)-Fe(1)-(03)#2 86.1(3)
(02)-Fe(1)-(N2)#1 95.4(3) (05)-Fe(1)-(04)#2 89.4(3)
(02)-Fe(1)-(03)#2 112.93) (06)-Fe(1)-(N2)#1 95.9(3)
(02)-Fe(1)-(04)#2 170.5(3) (06)-Fe(1)-(03)#2 85.1(3)
(02)-Fe(1)-(05) 88.3(3) (06)-Fe(1)-(04)#2 92.5(3)
(02)-Fe(1)-(05) 87.9(3) (06)-Fe(1)-(05) 168.2(3)

Symmetry codes: For MOF 1: #1 x,y+1,z #2 x+1/2,-y+3/2,z+1/2, #3 x,y-1,z, #4 x-1/2,-y+3/2,2-1/2.

For MOF 2: #1 -1+X, +Y, +Z #2 -X, 1/2+Y, 1/2-Z, #3 1+X, +Y, +Z, #4 -X, -1/2+Y, 1/2-Z.



Table S3. Crystallographic data and structure refinement details for MOF 1@1a, MOF 1@3a and

MOF 1@5a.
Data. MOF 1@la MOF 1@3a MOF 1@5a
Formula C1oHoFeN3Og¢ Ci0HoFeN;O¢ CioHoFeN;O¢
Mr 323.05 323.05 323.05
crystal system Monoclinic Monoclinic Monoclinic
space group C2/c C2/c C2/c
a(A) 19.5951(6) 19.5983(14) 19.576(12)
b (A) 10.8299(3) 10.8261(7) 10.830(3)
c(A) 13.5113(8) 13.5151(10) 13.515(15)
a(®) 90 90 90
B () 123.9650(10) 124.045(3) 123.96(2)
v (°) 90 90 90
V(A?) 2378.05(17) 2376.03) 2377(3)
4 8 8 8
Peale (Mg/m3) 1.805 1.806 1.806
p (mm-') 10.512 10.521 10.519
F(000) 1312.0 1312.0 1312.0
0 range(°) 9.814-133.002 9.818-133.638 9.816-133.238

Reflns collected
GOF on F?

Re/wRbP

7360
1.051

0.0815/0.2130

8459
1.060

0.0679/0.1753

6757
1.063

0.0482/0.1330

Table S4. Selected bond distances (A) and angles (°) for MOF 1@1a, MOF 1@3a, and MOF 1@5a.

MOF 1@1a
Fel-N3#1 2.158(4) Fel-06 2.181(4)
Fel-O1#2 2.227(3) N3-Fel#3 2.159(4)
Fel-02#2 2.207(3) O1-Fel#4 2.227(3)
Fel-O4 2.023(3) 02-Fel#4 2.207(3)
Fel-05 2.180(3) N3#1-Fel-O1#2 87.41(14)
N3#1-Fel-0242 146.36(14) N3#1-Fel-05 95.74(14)



N3#1-Fel-06 88.50(15) 02#2-Fel-O1#2 59.23(12)
04-Fel-N3#1 95.50(15) 04-Fel-O1#2 175.51(13)
04-Fel-02#2 118.07(14) 04-Fel-05 87.84(13)

04-Fel-06 92.74(15) 05-Fel-O1#2 88.47(13)
05-Fel-02#2 88.11(13) 05-Fel-06 175.64(12)
06-FelO-1#2 90.75(13) 06-Fel-02#2 87.81(14)

MOF 1@3a
Fel-N3#1 2.156(3) Fel-O142 2.202(3)
Fel-02#2 2.225(3) Fel-04 2.012(3)
Fel-05 2.191(4) Fel-06 2.185(3)
N3-Fel#3 2.156(3) O1-Fel#4 2.202(3)
02-Fel#4 2.225(3) N3#1-Fel-012 146.31(12)

N3#1-Fel-0242 87.51(12) N31-Fel-O5 87.81(13)
N31-Fel-06 95.98(13) O1#2-Fel-02#2 59.12(10)
04-Fel-N3#1 95.22(13) 04-Fel-O1#2 118.38(12)
04-Fel-02#2 175.73(12) 04-Fel-05 92.76(13)

04-Fel-06 87.90(13) 05-Fel-O1#2 88.07(12)
05-Fel-02#2 90.62(12) 06-Fel-O1#2 88.22(11)
06-Fel-02#2 88.55(11) 06-Fel-05 176.08(10)

MOF 1@5a
Fel-N3#1 2.159(3) Fel-02 87.46(12)
Fel-03#2 2.203(3) Fel-04#2 2.227(2)
Fel-05 2.179(3) Fel-06 2.178(3)

N3-Fel#3 2.159(3) 03-Fel#4 2.203(3)

O4-Fel#4 2.227(2) N3#1-Fel-03#2 146.54(9)

N3#1-Fel-04#2 87.51(10) N3#1-Fel-05 95.94(11)
N3#1-Fel-06 88.20(11) 02-Fel-N3#1 95.05(11)
02-Fel-03#2 118.33(9) 02-Fel-04#2 175.67(9)

02-Fel-05 87.87(10) 02-Fel-06 92.86(11)
032-Fel-04#2 59.32(8) 05-Fel-03#2 87.94(11)
05-Fel-04#2 88.39(10) 06-Fel-03#2 87.99(11)
06-Fel-04#2 90.71(10) 06-Fel-05 175.71(8)

Symmetry codes: For MOF 1@la: #1 +X,-1+Y, +Z, #2 1/2+X,1/2-Y,1/2+Z, #3 +X,1+Y +Z, #4 -
12+X,1/2-Y,-1/2+Z. For MOF 1@3a: #1 +X,1+Y,+Z, #2 -1/2+X,3/2-Y ,-1/2+Z, #3+X,-1+Y ,+Z, #4
1/2+X,3/2-Y,1/2+Z. For MOF 1@5a: #1 +X,1+Y,+Z, #2 -1/2+X,3/2-Y,-1/2+Z, #3 +X,-1+Y ,+Z, #4



1/2+X,3/2-Y,1/2+Z.

Scheme S1. Structure of the ligands used in this work.
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Fig. S1. (a) optical micrograph of MOF 2. (b-f) SEM image and EDS elemental mapping of MOF
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Fig. S2. (a) The FT-IR spectra. (b) TGA. (c-d) PXRD patterns of MOFs 1 and 2.

Fig. S3. XPS spectra of MOFs 1 and 2. (a) survey. (b) C 1s. (¢) N 1s. (d) O 1s. (e) Fe 2p.
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Fig. S4. (a-b) CO, and N, adsorption-desorption isotherm of MOF 2. (c-d) The pore size

distribution of MOFs 1 and 2.

Procedure for catalytic carboxylation of terminal alkynes with CQO,.

MOF 1 (0.5 mol%)

_ CsCO; (1.1 equv.) HCl
R—= + CoO, ’ R—=—COOH
60°C,5h

Scheme S2. General procedure for catalytic carboxylation of terminal alkynes with CO,.
General procedure for catalytic carboxylation reactions of terminal alkynes by MOF 1:
Typically, 0.5 mmol% MOF 1 and DMSO (1 mL) were carried out in a 10 mL Schlenk tube, then
Cs,CO;3 (1.1 equiv) and terminal alkyne (0.2 mmol) were added, and the reactor was flushed with
CO;, three times. Then, CO, was introduced and heated at 60 °C for 5 h. After reaction, 10 mL of
H,0 was added, the catalyst was separated and the mixture was extracted with ethyl acetate (3x10
mL) to remove the organic phase. The H,O phase was acidified with 1M HCI to pH = 1 and then
extracted with ethyl acetate (3x40 mL). The organic phase was washed with saturated NaCl solution
and dried over anhydrous MgSQO,. The product was further purified by column chromatography on
silica gel (petroleum ether/ethyl acetate = 1:5 as an eluent) to afford pure product.

The cyclization reaction of epoxides with CO,.

o O
MOF 1 (0.5 mol%)
A+ co, oA
R TBAB (3 mol%) R)\’O
80°C,8h

Scheme S3. General procedure for cyclization reaction of epoxides with CO,.

General procedures for cyclization reaction of epoxides with CO, by MOF 1: Added 10 mmol



epoxides compound, 0.5 mmol% MOF 1 and 3 mmol% TBAB into the Schlenk bottle. The air in
the Schlenk bottle was removed and 1 atm CO, was introduced into the Schlenk bottle, the reaction
mixture was stirred at 80 °C for 8 h.

The cyclization reaction of propargylic amines with CO,.

—~R
z )

rt

= Br + HN-R
DCM

Scheme S4. General procedure for the synthesis of terminal propargylic amine (5a-5x).

General procedures for the synthesis of terminal propargylic amine: Propargylic bromide (5
mmol) was slowly added into amine (25 mmol) in dichloromethane (15 mL) over 30 minutes and
the mixture was stirred overnight at room temperature. Then the mixture was extracted with
dichloromethane and washed with saturated aqueous NaHCO; (3%20 mL) and the organic phases
was collected and dried over anhydrous MgSO,. The mixture was concentrated and purified by
column chromatography on silica gel (petroleum ether/ethyl acetate = 9:1 as eluent) to afford the

corresponding product as pale-yellow liquid.

R MOF 1 (0.5 mol%) J?
Ry DBU (3 mol%) o
NH-R, + Co, M—R,
V4 50°C,8 h R,

R;

Scheme S5. General procedure for cyclization reaction of propargylic amine with CO,.

General procedure for the carboxylative cyclization of propargylic amine with CO, catalyzed
by MOF 1: In a typical experiment, the 0.5 mmol% MOF 1 and 1 mL CH;CN were added into 10
mL Schlenk tube equipped with a magnetic stir bar, then propargylic amine (72.6 mg, 0.5 mmol),
1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU, 3 mol%) were added. Then 0.1 MPa of CO, was
introduced and was stirred at 50 °C for 8 h. After reaction, the catalyst was separated and the mixture
was extracted with ethyl acetate (3%20 mL) to collect the organic phase, washed with saturated NaCl
solution and dried over anhydrous MgSO,. The product was further purified by column
chromatography on silica gel (petroleum ether/ethyl acetate = 10:1 as an eluent) to afford pure
product.

Procedure for the recyclable experiment: In the recycling experiments, MOF 1 was separated by
filtration, washed with methanol five times and then dried in a vacuum oven at 50 °C for 12 h for
the next cycle test.

Kinetic investigation of CO, conversion: The impact of various factors on the conversion rates of



la, 3a and 5a were experimentally proved through the investigate of reaction kinetics. In addition,
the temperature-dependence of the reaction were explored to determine the reaction’s activation
energy. The kinetic equation was obtained based on the literature reports,'? and it can be expressed
as:

In(1-x) = -kgpst + C 1)

InK = -E/RT +A 2)
where ko is the rate constant, t is the reaction time (h), x is the 1a, 3a and 5a conversion (%), T is

the temperature (K), A is the pre-exponential factor (s™'), and £, is the activation energy (J-mol™!).

Fig. S5 Diagram of the reaction device.
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Fig. S6. (a-c) Evidence of heterogeneous nature of MOF 1 in the three CO, catalytic reaction: (a)
carboxylation reaction of terminal alkynes with CO,. (b) cycloaddition reaction of epoxides with

COq;. (c) carboxylative cyclization of propargylic amines with CO,.

Fig. S7. First-order kinetic plots In(1-x) versus time at different temperatures (a, d, g) MOF 1. (b, e,
h) MOF 2. (c, f, j) fitted curves of InKobs versus 1/T for carboxylation reaction of terminal alkynes
with CO,. cycloaddition reaction of epoxides with CO, and carboxylative cyclization of propargylic

amines with CO,, respectively.
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epoxides with CO,. (d) carboxylative cyclization of propargylic amines with CO,.

Table S5. Carboxylation reaction yields at different temperatures using MOFs 1 and 2 as catalysts.

Yield (%)
Temperature (°C)
MOF 1 MOF 2
50 82 64
60 93 80
70 95 89
80 97 94

Reaction conditions: substrate (0.2 mmol), 5 h, 0.1 MPa of CO..

Table S6. Cycloaddition reaction yields at different temperatures using MOFs 1 and 2 as catalysts.

Yield (%)
Temperature (°C)
MOF 1 MOF 2
60 89 56
70 95 76
80 98 89
90 99 96

Reaction conditions: substrate (10 mmol), 8 h, 0.1 MPa of CO..

Table S7. Carboxylative cyclization yields at different temperatures using MOFs 1 and 2 as

catalysts.
Yield (%)
Temperature (°C)
MOF 1 MOF 2
40 93 71
50 97 84
60 98 93
70 99 97

Reaction conditions: substrate (0.5 mmol), 8 h, 0.1 MPa of CO..

Table S8. Carboxylation reaction yields of 1a with different catalyst dosages using MOF 1 as
catalyst.

Catalyst dosage Yield (%)




0.4 mol% 84

0.5 mol% 93

0.6 mol% 96

Reaction conditions: substrate (0.2 mmol), 60 °C, 5 h, 0.1 MPa of CO,.

Table S9. Carboxylation reaction yields at different 1a dosages using MOF 1 as catalyst.

la dosages Yield (%)
0.1 mmol 95
0.2 mmol 93
0.3 mmol 81

Reaction conditions: 0.5 mol% Cat., 60 °C, 5 h, 0.1 MPa of CO,.

Table S10. Cycloaddition reaction yields of 3a with different catalyst dosages using MOF 1 as

catalyst.
Catalyst dosage Yield (%)
0.4 mol% 94
0.5 mol% 98
0.6 mol% 99

Reaction conditions: substrate (10 mmol), 80 °C, 8 h, 0.1 MPa of CO.,.

Table S11. Cycloaddition reaction yields at different 3a dosages using MOF 1 as catalyst.

3a dosages Yield (%)
5 mmol 99
10 mmol 98
15 mmol 88

Reaction conditions: 0.5 mol% Cat., 80 °C, 8 h, 0.1 MPa of CO,.

Table S12. Carboxylative cyclization yields of 5a with different catalyst dosages using MOF 1 as

catalyst.
Catalyst dosage Yield (%)
0.4 mol% 85
0.5 mol% 97
0.6 mol% 99

Reaction conditions: substrate (0.5 mmol), 50 °C, 8 h, 0.1 MPa of CO,.



Table S13. Carboxylative cyclization yields at different 5a dosages using MOF 1 as catalyst.

Sa dosages Yield (%)
0.4 mmol 99
0.5 mmol 97
0.6 mmol 82

Reaction conditions: 0.5 mol% Cat., 50 °C, 8 h, 0.1 MPa of CO,.

Table S14. The performance comparison of carboxylation reaction of terminal alkynes with CO,.

Materials Temp (°C) Time (h) Yield (%) Ref.
AgNPs/Co-MOF 80 14 98 5
Ag@Pybpy-COF 50 12 98 6
Cu(IN)-MOF 80 4 80 7
INM-Au-1 50 2 90 8
Cu,TCPP(M) 25 10 99 9
Ag/MIL-100(Fe) 50 12 92 10
Ag@MIL-100(Fe) 50 15 94.6 11

MOF 1 50 5 93 This work

Table S15. The performance comparison of cycloaddition reaction of epoxides with CO,.

Materials Temp (°C) Time (h) Yield (%) Ref.
Zn@PD-iCOF 100 12 99 12
MOCs 80 12 97 13
Si0,@MOF 80 24 71 14
JLU-MOF200 60 6 58 15
Co-Py-COF 80 18 94 16
LCU-606 60 10 99 17
LTG-FeZr 120 8 90 18
MOF-919-Cu-Fe 25 24 99 19

FeCo,-MOF 80 8 99 20



Fel,(Fe(CN)o)s 100 3 99 21

MOF 1 80 8 98 This work

Table S16. The performance comparison of carboxylative cyclization of propargylic amines with

CO..
Materials Temp (°C) Time (h) Yield (%) Ref.
MOF (1) 50 12 99 22
Co-MOF 50 8 98 23
[Zny(Trz)s(OH);, 70 12 99 24

(H,0)9-8H,0],

10.1-20.4-30.5-INM 25 3 99 25
Compound 1 60 12 98 26
l'@Ag NPs 25 4 99 27
Cu,O@ZIF-8 40 6 99 28
Agy;-MOF 26 6 97 29
Zn-MOF-2 50 12 93 30
MOF 1 50 8 97 This work

H spectra for alkynyl carboxylic acids

3-phenylpropiolic acid (2a)

@—'_:—COOH

"H NMR (600 MHz, CDCl;) 6 7.62 (d, J = 6.8 Hz, 2H), 7.49 (d, /= 7.5 Hz, 1H), 7.39 (d, J = 7.7
Hz, 2H).

3-(p-tolyl)propiolic acid (2b)

—-@—:—COOH

'"H NMR (600 MHz, CDCls) 6 7.51 (d, J= 8.1 Hz, 2H), 7.20 (d, J = 7.9 Hz, 2H), 2.39 (s, 3H).

3-(4-methoxyphenyl)propiolic acid (2¢)



MeO—O—Z—COOH

'"H NMR (600 MHz, CDCls) 6 7.57 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H).

3-(m-tolyl)propiolic acid (2d)

@——:—COOH

"H NMR (600 MHz, CDCI3) 6 7.45 — 7.41 (m, 2H), 7.29 (s, 2H), 2.36 (s, 3H).
3-(3-methoxyphenyl)propiolic acid (2e)
MeQ,

@—__——COOH
'"H NMR (600 MHz, CDCl3) 6 7.30 (t, J=7.9 Hz, 1H), 7.22 (d, /= 7.6 Hz, 1H), 7.12 (dd, J = 2.7,
1.4 Hz, 1H), 7.03 (dd, /= 8.4, 1.6 Hz, 1H), 3.82 (s, 3H).

3-(4-ethoxyphenyl)propiolic acid (2f)
o—@—%eom{
-/

'H NMR (600 MHz, DMSO) § 7.56 (d, J = 8.8 Hz, 2H), 7.00 (d, J = 8.8 Hz, 2H), 4.09 (q, J= 7.0
Hz, 2H), 1.34 (t, J = 7.0 Hz, 3H).

3-(4-bromophenyl)propiolic acid (2g)

Br—O—E—COOH

'"H NMR (600 MHz, DMSO) 6 7.68 (d, J= 8.5 Hz, 2H), 7.58 (d, J = 8.5 Hz, 2H).

3-(4-fluorophenyl)propiolic acid (2h)

F—@—:—COOH

'H NMR (600 MHz, CDCls) 6 7.64 — 7.60 (m, 2H), 7.10 (t, J = 8.5 Hz, 2H).

3-(4-cyanophenyl)propiolic acid (2i)

NC—@—:—COOH

'"H NMR (600 MHz, DMSO) 6 7.95 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 8.5 Hz, 2H).

3-(3-bromophenyl)propiolic acid (2j)

Br.
@%ooon

'"H NMR (600 MHz, CDCl3) 6 7.76 (s, 1H), 7.62 (d, J= 8.1 Hz, 1H), 7.54 (d, J= 7.8 Hz, 1H), 7.28



(t,J=8.0 Hz, 1H).

3-(3-fluorophenyl)propiolic acid (2k)

F,

'H NMR (600 MHz, CDCl;) 8 7.42 — 7.28 (m, 3H), 7.23 — 7.17 (m, 1H).

4-phenoxybut-2-ynoic acid (2I)

@O%COOH

'H NMR (600 MHz, CDCls) & 7.34 — 7.31 (m, 2H), 7.04 (tt, J = 7.4, 1.1 Hz, 1H), 6.97 — 6.95 (m,
2H), 4.83 (s, 2H).

3-(thiophen-3-yl)propiolic acid (2m)

S@—E—COOH

'H NMR (600 MHz, DMSO) & 8.17 (dd, J = 3.0, 1.2 Hz, 1H), 7.68 (dd, J = 5.0, 2.9 Hz, 1H), 7.31
(dd, J=5.0, 1.2 Hz, 1H).

3-(naphthalen-2-yl)propiolic acid (2n)

'"H NMR (600 MHz, DMSO) 6 8.29 (d, J= 1.6 Hz, 1H), 7.96 (ddd, /= 10.1, 7.5, 2.1 Hz, 3H), 7.61

COOH
=

7

~7.56 (m, 3H).

3-(naphthalen-1-yl)propiolic acid (20)

K

H

'H NMR (600 MHz, CDCl3) § 11.06 (s, 1H), 8.35 (d, J = 8.4 Hz, 1H), 7.98 (d, J
= 8.2 Hz, 1H), 7.91 — 7.87 (m, 2H), 7.65 (ddd, J= 8.3, 6.8, 1.3 Hz, 1H), 7.58 (ddd, J=8.1, 6.8, 1.2
Hz, 1H), 7.48 (dd, J= 8.3, 7.1 Hz, 1H).

3-(3,5-dimethoxyphenyl)propiolic acid (2p)

——COOH

”of%fo\

"H NMR (600 MHz, DMSO) 6 6.76 (d, J= 2.3 Hz, 2H), 6.65 (t, J = 2.3 Hz, 1H), 3.76 (s, 6H).

3-(3,5-bis(trifluoromethyl)phenyl)propiolic acid (2q)



F;C

@——:—COOH

FyC
'H NMR (600 MHz, DMSO) § 8.31 (d, J = 1.7 Hz, 2H), 8.20 (s, 1H).

3,3'-(1,4-phenylene)dipropiolic acid (2r)

Hooc—=— )—=—cooH

'"H NMR (600 MHz, DMSO) & 7.71 (s, 4H).

3-([1,1'-biphenyl]-4-yl)propiolic acid (2s)

Ph—©—:—c00H

'H NMR (600 MHz, DMSO) § 7.81 — 7.69 (m, 6H), 7.50 (t, J = 7.7 Hz, 2H), 7.42 (t, J = 7.3 Hz,
1H).

but-2-ynoic acid (2t)

——COOH

"H NMR (600 MHz, DMSO) 6 1.99 (s, 3H).
oct-2-ynoic acid (2u)

/\/\/

'H NMR (600 MHz, CDCl3) § 10.77 (s, 1H), 2.33 (t, J = 7.2 Hz, 2H), 1.57 (p, J = 7.2 Hz, 2H), 1.40

COOH

—1.29 (m, 4H), 0.89 (t, J= 7.2 Hz, 3H).
IH spectra for cyclic carbonates

4-phenyl-1,3-dioxolan-2-one (4a)
O O
O<x
'H NMR (600 MHz, CDCl;) & 7.48 — 7.30 (m, 5H), 5.67 (t, J = 8.0 Hz, 1H), 4.79 (t, J = 8.4 Hz,

1H), 4.35 - 4.31 (m, 1H).

4-ethyl-1,3-dioxolan-2-one (4b)

0,
Yo
O\)\/
'H NMR (600 MHz, CDCl;) 6 4.55 (dt, J = 13.8, 7.0 Hz, 1H), 4.40 (dd, J = 8.6, 7.9 Hz, 1H), 3.95

(dd, J = 8.6, 6.9 Hz, 1H), 1.67 — 1.58 (m, 2H), 0.88 — 0.83 (m, 3H).



4-(chloromethyl)-1,3-dioxolan-2-one (4c)

O,
Mg
Ol
'H NMR (600 MHz, CDCl;) 8 5.01 —4.92 (m, 1H), 4.58 (t,J = 8.6 Hz, 1H), 4.39 (dd, /= 8.9, 5.7
Hz, 1H), 3.80 — 3.70 (m, 2H).

4-(bromomethyl)-1,3-dioxolan-2-one (4d)

Q

-0

O\)\/Br
'"H NMR (600 MHz, CDCl3) § 4.97 — 4.88 (m, 1H), 4.51 (t, J = 8.4 Hz, 1H), 4.22 (dd, /= 8.9,5.3
Hz, 1H), 3.61 — 3.48 (m, 2H).
4-butyl-1,3-dioxolan-2-one(4e)

O,

Mo
O\)\/\/
'H NMR (600 MHz, CDCl;)  4.68 — 4.61 (m, 1H), 4.46 (t, J = 8.2 Hz, 1H), 4.02 — 3.96 (m, 1H),
1.74 - 1.67 (m, 1H), 1.65 — 1.58 (m, 1H), 1.40 — 1.25 (m, 4H), 0.84 (t, J = 7.1 Hz, 3H).

4-(butoxymethyl)-1,3-dioxolan-2-one (4f)

O
o0&
\/\/O\)\/O
'"H NMR (600 MHz, CDCl5) 6 4.74 (dt, J= 5.7, 2.8 Hz, 1H), 4.45 — 4.27 (m, 2H), 3.60 — 3.49 (m,
2H), 3.42 — 3.34 (m, 2H), 1.47 — 1.42 (m, 2H), 1.27 (q, /= 7.6 Hz, 2H), 0.82 (t, /= 7.3 Hz, 3H).

4-((neopentyloxy)methyl)-1,3-dioxolan-2-one (4g)

O
O
0 _(
Mol )
'H NMR (600 MHz, CDCl;) 6 4.76 — 4.68 (m, 1H), 4.41 (t,J= 8.3 Hz, 1H), 4.29 (dd, J= 8.3, 5.7

Hz, 1H), 3.55 (dd, J=10.6, 3.9 Hz, 1H), 3.43 (dd, J=10.6, 3.5 Hz, 1H), 1.11 (s, 9H).

4-((allyloxy)methyl)-1,3-dioxolan-2-one (4h)

O

o4

%\/0\/&/0
'H NMR (600 MHz, CDCl;) & 5.88 — 5.80 (m, 1H), 5.25 (dd, /= 17.3, 1.7 Hz, 1H), 5.19 (dd, J =

10.4, 1.5 Hz, 1H), 4.84 — 4.78 (m, 1H), 4.48 (t, J= 8.4 Hz, 1H), 4.37 (dd, J = 8.4, 6.0 Hz, 1H), 4.03



(t,J=5.2 Hz, 2H), 3.67 (dd, J=11.1, 3.8 Hz, 1H), 3.59 (dd, J=11.1, 3.7 Hz, 1H).

4-((benzyloxy)methyl)-1,3-dioxolan-2-one (4i)

oA
@VO\/K/O
'H NMR (600 MHz, CDCl5)  7.28 — 7.21 (m, 5H), 4.72 — 4.65 (m, 1H), 4.47 (q, /= 12.1 Hz, 2H),
433 (t,J= 8.5 Hz, 1H), 4.24 (dd, J = 8.4, 5.9 Hz, 1H), 3.60 (dd, J= 11.2, 3.4 Hz, 1H), 3.48 (dd, J
=11.1, 3.7 Hz, 1H).

4-((benzyloxy)methyl)-1,3-dioxolan-2-one (4j)

'H NMR (600 MHz, CDCl3) §7.30 (t, J = 7.7 Hz, 2H), 7.01 (t, ] = 7.3 Hz, 1H), 6.91 (dt, J=7.7, 1.0
Hz, 2H), 5.02 (dq, J = 8.9, 3.9 Hz, 1H), 4.60 (t, ] = 8.5 Hz, 1H), 4.52 (dd, J = 8.5, 5.9 Hz, 1H), 4.23
(dd,J=10.6, 4.1 Hz, 1H), 4.13 (dd, J = 10.6, 3.6 Hz, 1H).

tetrahydro-4H-cyclopenta[d][1,3]dioxol-2-one (4k)
O,
L=
O

'H NMR (600 MHz, CDCl3) & 5.07 — 5.02 (m, 2H), 2.09 (dd, /= 14.2, 5.1 Hz, 2H), 1.77 — 1.67 (m,
2H), 1.66 — 1.57 (m, 2H).

hexahydrobenzo[d][1,3]dioxol-2-one (4])
O,
L
O
'H NMR (600 MHz, CDCl;) & 4.64 (t, /= 4.2 Hz, 2H), 1.88 — 1.76 (m, 4H), 1.57 — 1.49 (m, 2H),

1.40 — 1.33 (m, 2H).

H spectra for oxazolidinones

3-Benzyl-5-methyleneoxazolidin-2-one (6a)
(0]

O)LN’@
'H NMR (600 MHz, CDCl3) & 7.39 — 7.26 (m, 5H), 4.74 (q, J = 2.8 Hz, 1H), 4.47 (s, 2H), 4.24 (q,
J=2.5Hz, 1H), 4.02 (t, J= 2.4 Hz, 2H).

3-(4-fluorobenzyl)-5 methyleneoxazolidin-2-onel (6b)



O

OJLN’@

)_J F

'"H NMR (600 MHz, CDCl3) 8 7.25 — 7.19 (m, 2H), 7.00 (t, J = 8.6 Hz, 2H), 4.67 (q, J = 2.8 Hz,
1H), 4.39 (s, 2H), 4.22 (dd, /= 3.6, 1.8 Hz, 1H), 3.99 (t, J = 2.5 Hz, 2H).
3-(4-chlorphenyl)-5-methyleneoxazolidin-2-one (6¢)

0]

o’lL N’\©\

)—J Cl

'H NMR (600 MHz, CDCls) 8 7.25 (s, 2H), 7.15 (d, J= 8.1 Hz, 2H), 4.66 (q, J = 2.9 Hz, 1H), 4.36
(s,2H), 4.19 (q,J=2.6 Hz, 1H), 3.96 (t, J = 2.5 Hz, 2H).
3-(4-bromobenzyl)-5-methyleneoxazolidin-2-one (6d)

O

0’lL N’\©\

f Br

'"H NMR (600 MHz, CDCl3) § 7.29 — 7.25 (m, 2H), 6.98 — 6.94 (m, 2H), 4.52 (q, J = 2.8 Hz, 1H),
4.21 (s, 2H), 4.06 (dt, J=3.2,2.2 Hz, 1H), 3.83 (t,J=2.5 Hz, 2H).

3-(4-methylbenzyl)-5 methyleneoxazolidin-2-one (6e)

(0]

WOANﬁ
'H NMR (600 MHz, CDCl3) 8 7.37 — 7.21 (m, 4H), 4.82 (g, J = 2.9 Hz, 1H), 4.52 (s, 2H), 4.32 (q,
J=2.6Hz, 1H), 4.10 (t, J = 2.4 Hz, 2H), 2.44 (s, 3H).

3-(3-methylbenzyl)-5-methyleneoxazolidin-2-one (6f)
O

»%AN“CK

'H NMR (600 MHz, CDCl5) 6 7.23 (t, J=7.6 Hz, 1H), 7.12 (d, J= 7.6 Hz, 1H), 7.09 — 7.04 (m,
2H), 4.71 (g, J = 2.8 Hz, 1H), 4.41 (s, 2H), 4.23 (dt, J = 3.1, 2.2 Hz, 1H), 4.01 (t, J = 2.4 Hz, 2H),
2.34 (s, 3H).

3-(4-methoxybenzyl)-5-methyleneoxazolidin-2-one (6g)



o

o’lL N’\©\
7
'"H NMR (600 MHz, CDCl;3) 8 7.19 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 4.71 (q, /= 2.8
Hz, 1H), 4.39 (s, 2H), 4.22 (dt, J=3.2, 2.2 Hz, 1H), 3.99 (t, J = 2.4 Hz, 2H), 3.80 (s, 3H).
5-methylene-3-(4-(trifluoromethyl)benzyl)oxazolidin-2-one (6h)

0]

o’lL N’\©\

Sl

'H NMR (600 MHz, CDCls3) § 7.46 (d, J= 8.1 Hz, 2H), 7.27 (s, 2H), 4.57 (g, J = 2.8 Hz, 1H), 4.38
(s, 2H), 4.15-4.10 (m, 1H), 3.93 (t, J=2.5 Hz, 2H).
4-((5-methylene-2-oxooxazolidin-3-yl)methyl)benzonitrile (6i)

0

%’)LN“@
CN
'H NMR (600 MHz, CDC13) 0 7.60-17.56 (m, 2H), 7.36 — 7.33 (m, 2H), 4.65(q,J=2.8 Hz, lH),

4.46 (s, 2H), 4.22 (q, J = 2.4 Hz, 1H), 4.03 (t, J = 2.5 Hz, 2H).

3-(2,4-difluorobenzyl)-5-methyleneoxazolidin-2-one (6j))

'H NMR (600 MHz, CDCls) § 7.31 (td, J = 8.5, 6.3 Hz, 1H), 6.87 — 6.76 (m, 2H), 4.68 (q, J = 2.8
Hz, 1H), 4.45 (d, J = 1.5 Hz, 2H), 4.23 (dt, J=3.2, 2.2 Hz, 1H), 4.07 (t, J= 2.5 Hz, 2H).
3-(3,4-dichlorobenzyl)-5-methyleneoxazolidin-2-one (6Kk)

O

O)LN’UQ
¢ Cl
'H NMR (600 MHz, CDCLy) § 7.40 — 7.30 (m, 2H), 7.09 (dd, J = 8.2, 2.1 Hz, 1H), 4.68 (q, J = 2.7

Hz, 1H), 4.36 (s, 2H), 4.24 (dt, J= 3.3, 2.2 Hz, 1H), 4.02 (t, J = 2.4 Hz, 2H).

3-(1-Phenethyl)-5-methyleneoxazolidin-2-one (61)
(0]

b



'H NMR (600 MHz, CDCl;) § 7.46 — 7.08 (m, SH), 5.15 (q, J = 7.1 Hz, 1H), 4.60 (q, J = 2.8 Hz,
1H), 4.13 (dd, J = 3.1, 2.0 Hz, 1H), 4.02 (dt, J = 14.3, 2.4 Hz, 1H), 3.71 — 3.65 (m, 1H), 1.50 (d, J
=7.2 Hz, 3H).

3-Phenethyl-5-methyleneoxazolidin-2-one (6m)
(0]

O)LN/\/@
'"H NMR (600 MHz, CDCls) 8 7.32 — 7.01 (m, 5H), 4.62 (d, J= 2.8 Hz, 1H), 4.15 (d, J = 3.1 Hz,
1H), 3.93 (t, J=2.4 Hz, 2H), 3.51 — 3.47 (m, 2H), 2.82 (t, /= 7.3 Hz, 2H).

5-methylene-3-(pyridin-2-ylmethyl)oxazolidin-2-one (6n)

O
O)LN N.
a [ l N
—
'H NMR (600 MHz, CDCls) § 8.56 (d, J = 4.9 Hz, 1H), 7.70 (td, J= 7.7, 1.8 Hz, 1H), 7.31 (d, J =
7.8 Hz, 1H), 7.25 — 7.22 (m, 1H), 4.75 (q, J = 2.8 Hz, 1H), 4.58 (s, 2H), 4.27 — 4.26 (m, 1H), 4.23
(t, J = 2.4 Hz, 2H).

3-(furan-2-ylmethyl)-5-methyleneoxazolidin-2-one (60)
(0]

o’u‘ NN\

YR

'H NMR (600 MHz, CDCl3) 6 7.34 (dd, J=1.9, 0.9 Hz, 1H), 6.31 — 6.26 (m, 2H), 4.67 (q, J = 2.8
Hz, 1H), 4.41 (s, 2H), 4.24 — 4.22 (m, 1H), 4.09 (t, J = 2.4 Hz, 2H).
5-methylene-3-(thiophen-2-ylmethyl)oxazolidin-2-one (6p)

0O

N

Q N

—

S/

'H NMR (600 MHz, CDCls) § 7.22 — 7.16 (m, 1H), 6.96 — 6.86 (m, 2H), 4.64 (d, J = 2.9 Hz, 1H),
4.56 (s, 2H), 4.18 (d, J = 2.8 Hz, 1H), 4.02 (t, J = 2.5 Hz, 2H).

3-(2-(1H-indol-3-yl)ethyl)-5-methyleneoxazolidin-2-one (6q)

o

'H NMR (600 MHz, CDCls) § 8.31 (s, 1H), 7.60 (dd, J= 7.9, 1.2 Hz, 1H), 7.38 (dt, /= 8.1, 0.9 Hz,

1H), 7.22 (t,J = 7.0 Hz, 1H), 7.15 (d, J = 8.0 Hz, 1H), 7.03 (s, 1H), 4.70 (q, /= 2.8 Hz, 1H), 4.19



(q,J=2.3 Hz, 1H), 4.02 (t, /= 2.4 Hz, 2H), 3.65 (t, /= 7.2 Hz, 2H), 3.05 (t, J = 7.2 Hz, 2H).

3-Cyclohexyl-5-methyleneoxazolidin-2-one (6r)
L0
QO N

"H NMR (600 MHz, CDCls) 6 4.65 (t,J=2.7 Hz, 1H), 4.23 (q,J = 2.6 Hz, 1H), 4.09 (d, /= 2.5 Hz,
2H), 3.66 (m, 1H), 1.79 — 1.74 (m, 4H), 1.64 — 1.60 (d, 1H), 1.30 (m, 4H), 1.09 — 1.01 (m, 1H).

3-cyclopentyl-5-methyleneoxazolidin-2-one (6s)
(0]

HAD
'H NMR (600 MHz, CDCL3) § 4.53 (q, J = 2.7 Hz, 1H), 4.16 — 4.14 (m, 1H), 4.07 (p, J = 8.0 Hz,
1H), 4.02 (t, J=2.5 Hz, 2H), 1.78 — 1.71 (m, 2H), 1.57 (d, J = 3.1 Hz, 2H), 1.49 — 1.39 (m, 4H).

3-methyl-5-methyleneoxazolidin-2-one (6t)
0]

M~

O N

'H NMR (600 MHz, CDCL3) & 4.65 (q, J = 2.8 Hz, 1H), 4.24 — 422 (m, 1H), 4.12 (t, J = 2.4 Hz,
2H), 2.86 (s, 3H).

4,4-dimethyl-5-methyleneoxazolidin-2-one (6u)
(0]

N

O NH

'H NMR (600 MHz, CDCl3) 3 7.06 (s, 1H), 4.59 (dd, J = 3.4, 1.1 Hz, 1H), 4.19 (d, J = 3.4 Hz, 1H),
1.42 (s, 6H).

3-(5-methylene-2-oxoo0xazolidin-3-yl)propanenitrile (6v)

O

O)LN ~CN

'HNMR (600 MHz, CDCl3) § 4.79 (q, J=2.8 Hz, 1H), 4.35 (d, /= 2.7 Hz, 3H), 3.60 (t, /= 6.4 Hz,
2H), 2.67 (t, J = 6.4 Hz, 2H).

3-(2-methoxyethyl)-5-methyleneoxazolidin-2-one (6w)



O
P N~ O

'H NMR (600 MHz, CDCly) 8 4.72 (q, J = 2.7 Hz, 1H), 4.28 (t, J = 2.4 Hz, 2H), 4.27 — 4.25 (m,
1H), 3.56 — 3.53 (m, 2H), 3.48 — 3.45 (m, 2H), 3.34 (s, 3H).

3-dodecyl-5-methyleneoxazolidin-2-one (6x)
O)LN

'H NMR (600 MHz, CDCls) & 4.72 (q, J = 2.7 Hz, 1H), 4.27 (dt, J = 3.1, 2.2 Hz, 1H), 4.14 (t, J =
2.4 Hz, 2H), 3.29 — 3.26 (m, 2H), 1.53 (q, J = 7.2 Hz, 2H), 1.27 (d, J = 29.1 Hz, 18H), 0.87 (t, J=

7.0 Hz, 3H).

11.5 lll.U 10.5 100 95 90 85 80 75 70 65 60 55 S50 45 40 35 3.0 25 20
f1 (ppm)

'H NMR (600 MHz, CDCl;) spectrum of 2a
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