

Supplementary Information

Membranes from bio-based poly (ethylene furanoate) and natural solvents

Malinalli Ramírez-Martínez,^a Usman T. Syed,^a Glenda Terán-Cuadrado,^{bc} Anissa Nurdiauwati,^{ac} Maria Di Vincenzo,^a Iuliana M. Andrei,^a Dimitrios N. Bikaris,^d Sami G. Al-Ghamdi^{ac} and Suzana P. Nunes^{*abe}

^a*Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia.*

^b*Chemical Engineering Program, Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.*

^c*KAUST Climate and Livability Initiative, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.*

^d*Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.*

^e*Chemistry Program and Chemical Engineering Program, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology*

*Corresponding author: Suzana P. Nunes (suzana.nunes@kaust.edu.sa)

Table of Contents

1. Supplementary Texts

PEF Synthesis

Nuclear magnetic resonance (NMR) details.

Life Cycle Assessment (LCA) methodology

2. Supplementary Figures

Supplementary Figure 1. Chemical structures and reactions for PEF membrane production

Supplementary Figure 2. FTIR analysis of the synthesized PEF.

Supplementary Figure 3. Thermal analysis of the synthesized PEF

Supplementary Figure 4. PEF Hansen interaction sphere and green solvent screening

Supplementary Figure 5. NMR spectra of pristine and heated 4:1 thymol-vanillin solutions

Supplementary Figure 6. Vanillin hydrogen bond and tautomerism in solution

Supplementary Figure 7. UV-Vis spectra of 4:1 thymol-vanillin solutions

Supplementary Figure 8. ¹H NMR spectra of pure vanillin solutions

Supplementary Figure 9. Color change in pure vanillin solutions

Supplementary Figure 10. ¹³H NMR of PEF solutions and single components

Supplementary Figure 11. ¹³C NMR of PEF solutions and single components

Supplementary Figure 12. ¹H NMR investigation of hydrogen bond as a function of temperature.

Supplementary Figure 13. Optical micrographs of PEF solutions with polarizer

Supplementary Figure 14. XRD diffractogram of a PEF membrane sample

Supplementary Figure 15. DSC analysis of 18 wt% PEF solutions in 4:1 thymol-vanillin

Supplementary Figure 16. Phase separation of 15 wt% PEF in 4:1 thymol-vanillin induced by solvent-ethanol exchange

Supplementary Figure 17. Phase separation of 18 wt% PEF in 4:1 thymol-vanillin induced by solvent-ethanol exchange

Supplementary Figure 18. Phase separation of 21 wt% PEF in 4:1 thymol-vanillin induced by solvent-ethanol exchange

Supplementary Figure 19. Surface SEM micrographs of PEF membranes

Supplementary Figure 20. Surface pore size distribution of PEF membranes

Supplementary Figure 21. AFM analysis of PEF membranes

Supplementary Figure 22. Pore size distribution measured by gas-liquid displacement capillary flow porometry

Supplementary Figure 23. Mechanical properties of PEF membranes

Supplementary Figure 24. Contact angle of PEF membranes

Supplementary Figure 25. Photographs of juice feed

Supplementary Figure 26. Pomegranate juice flux for PEF, PES, and PSf membranes

Supplementary Figure 27. Effect of membrane fouling and backwashing on PEF water permeance

Supplementary Figure 28. Water permeance comparison of polymeric membranes

Supplementary Figure 29. Juice turbidity reduction in pomegranate juice after clarification with the optimized PEF membrane or commercial PES and PSf membranes

Supplementary Figure 30. Up-scaled process diagram for PEF production

Supplementary Figure 31. Comparison of the environmental impacts of hydrodistillation and supercritical fluid extraction for thymol production

Supplementary Figure 32. Comparison of the environmental impact of PEF membrane production with hydrodistillation or supercritical fluid extraction within thymol production

Supplementary Figure 33. Comparison of the environmental impacts of PEF and different types of PET membrane production
Supplementary Figure 34. GWP of the different types of PET studied in this work
Supplementary Figure 35. Effect of ethanol type on the environmental impacts of PEF membrane fabrication
Supplementary Figure 36. Process contribution of 1 m² PEF membrane production with waste recycling scenario
Supplementary Figure 37. Environmental impact of the production of 1 m² of PEF membrane with different waste treatment scenarios
Supplementary Figure 38. Electricity mix in the regions analyzed in this work
Supplementary Figure 39. Global Warming Potential (GWP) of electricity generation in different regions
Supplementary Figure 40. Effect of different electricity scenarios for PEF membrane production

3. Supplementary Tables

Supplementary Table 1. Hansen Solubility Parameters and Ra distance of PEF and selected green solvents
Supplementary Table 2. Juice properties before (feed) and after (permeate) clarification with PEF membranes in dead-end configuration
Supplementary Table 3. Pomegranate juice properties before (feed) and after (permeate) clarification with PEF, PES or PSf membranes in dead-end configuration
Supplementary Table 4. Pomegranate juice properties during clarification with a PEF membrane in cross-flow configuration
Supplementary Table 5. Pomegranate juice properties during clarification with a commercial PES membrane in cross-flow configuration.
Supplementary Table 6. Description of the scenarios explored in the LCA study
Supplementary Table 7. Description of the two types of general scenarios mentioned in this LCA study
Supplementary Table 8. Description of the subprocesses explored in the LCA study
Supplementary Table 9. Life Cycle Inventory of the production of 1 m² PEF membrane
Supplementary Table 10. Life Cycle Inventory of the production of 1 kg of thymol-vanillin mixture
Supplementary Table 11. Life Cycle Inventory of the production of 1 m² PET membrane
Supplementary Table 12. Life Cycle Inventory of the distillation of ethanol from the solvent waste generated during PEF membrane fabrication
Supplementary Table 13. Life Cycle Inventory of incineration of the remaining solvent after distillation
Supplementary Table 14. Life Cycle Inventory of incineration of PEF residue
Supplementary Table 15. Life Cycle Inventory of the synthesis of 1 kg of PEF
Supplementary Table 16. Life Cycle Inventory of the distillation of ethanol from the solvent waste generated during PEF synthesis
Supplementary Table 17. Life Cycle Inventory of the synthesis of 1 kg of 2,5-furan dicarboxylic acid (FDCA) from hydroxymethyl furfural
Supplementary Table 18. Life Cycle Inventory of the synthesis of 1 kg of hydroxymethyl furfural from wood biomass
Supplementary Table 19. Life Cycle Inventory of the production of 1 kg of vanillin from kraft lignin

Supplementary Table 20. Life Cycle Inventory of the production of 1 kg of PODIC 0.2 M for vanillin production

Supplementary Table 21. Life Cycle Inventory of the production of 1 kg of lignin feed for vanillin production

Supplementary Table 22. Life Cycle Inventory of the production of 1 kg of kraft lignin

Supplementary Table 23. Life Cycle Inventory of the production of 1 kg of thymol by crystallization from thyme essential oil

Supplementary Table 24. Life Cycle Inventory of the extraction of thyme essential oil by hydrodistillation

Supplementary Table 25. Life Cycle Inventory of the extraction of thyme essential oil by supercritical fluid extraction

Supplementary Table 26. Life Cycle Inventory of the cultivation of thyme

Supplementary Table 27. Environmental impacts of thymol extraction with hydrodistillation or supercritical fluid extraction technologies

Supplementary Table 28. Environmental impacts of the production of 1 m² of PEF membrane with hydrodistillation or Supercritical fluid extraction as technologies for thymol extraction

Supplementary Table 29. Environmental impacts of the production of 1 m² of PEF membrane under the baseline scenario

Supplementary Table 30. Environmental impacts of the production of 1 m² of fossil PET membrane

Supplementary Table 31. Environmental impacts of the production of 1 m² of PET membrane from different PET types

Supplementary Table 32 Environmental impacts of the production of 1 m² of PEF membrane under different energy geographical scopes

Supplementary Table 33. Environmental impacts and coefficients of variation to produce 1 m² of PEF membrane fabrication under different energy geographical scopes

Supplementary Table 34. Environmental impacts of the production of 1 m² of PEF membrane under the optimal scenario

Supplementary Table 35. Comparison with other literature reports on LCA on bio-based materials for membrane fabrication

1. Supplementary Texts

PEF synthesis

Poly (ethylene 2,5-furandiacarboxylate) (PEF) was synthesized via a two-stage polycondensation method. In the first step (esterification), 2,5-furan dicarboxylic acid (FDCA) and ethylene glycol were utilized in a 1:2.1 molar ratio and were added to the reaction flask (250 ml). The reaction mixture was heated at 170°C for 30 min, 190°C for 1 h, 200°C for 30 min, and 210°C for 30 min under nitrogen and a stirring speed of 200 rpm. After the completion of the first step, (400 ppm) catalyst was added to the reaction flask and vacuum (5.0 Pa) was applied slowly for 15 min to initiate the polycondensation process. Furthermore, the temperature was progressively increased to 250°C. The reaction mixture was heated at 250°C and at 260°C for 2h each time. At the same time, the stirring speed decreased (100-70-50 rpm) to avoid high shear stress while the viscosity increased. Finally, the samples were retrieved from the reaction mixture, milled and washed with methanol to remove any unreacted substances. The reaction yield was 95%.

Nuclear magnetic resonance (NMR) details.

¹H NMR and ¹³C NMR spectra were recorded on Bruker 600 MHz spectrometer. For samples solubilized in TFA-d, the internal reference peaks were set at 11.50 ppm (¹H) and 116 ppm and 164 ppm (¹³C). Chemical shifts (δ) are given in ppm to the nearest 0.01 ppm (¹H) and 0.1 ppm (¹³C). The coupling constants (J) are given in Hertz (Hz). The signals are reported as follows: chemical shift, multiplicity (s – singlet, d – doublet, m – multiplet), coupling constants (J) and integration.

PEF: **¹H NMR (TFA-d, 600 MHz at 25°C)** δ (ppm) = 7.4 (s, 2H, C-H furan), 4.82 (s, 4H, CH₂). **¹³C NMR (TFA-d, 600 MHz at 25°C)** δ (ppm) = 162.5 (s, 2C, C=O), 148.5 (s, 2C, C-O furan), 122.4 (s, 2C, C=C furan), 66.12 (s, 2C, CH₂).

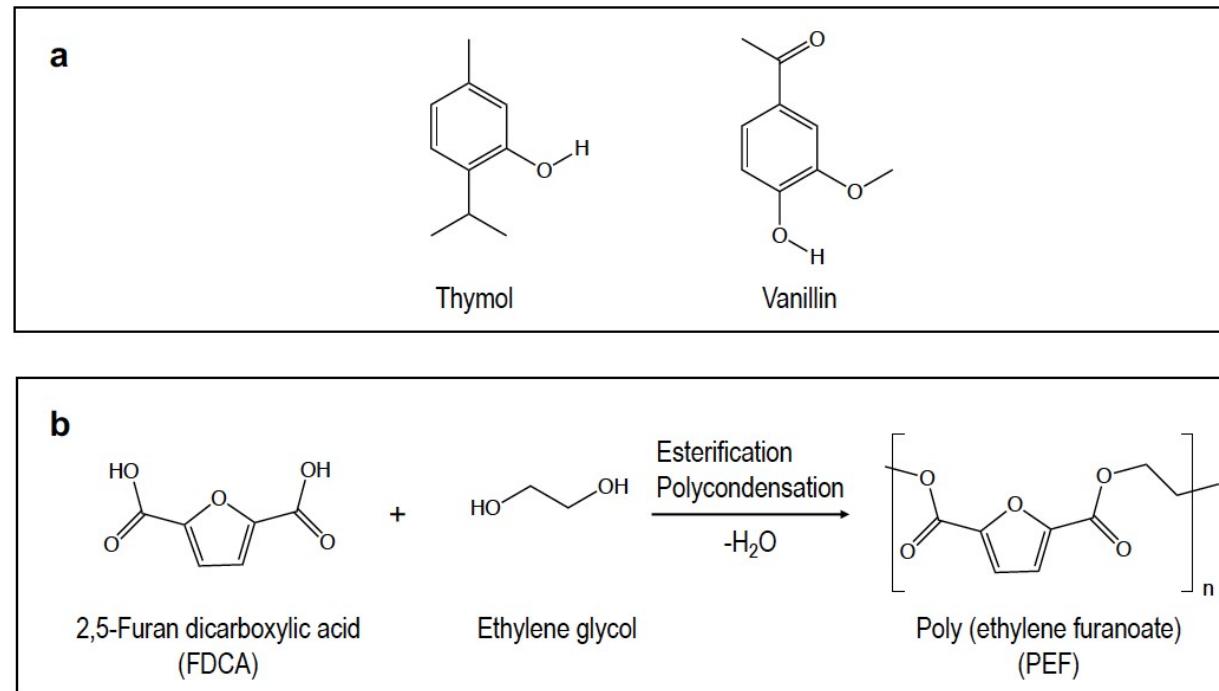
Thymol: **¹H NMR (TFA-d, 600 MHz at 25°C)** δ (ppm) = 7.3 (s, 1H, C-H aromatic), 6.99 (d, 1H, J = 6.9 Hz, C-H aromatic), 6.88 (s, 1H, C-H aromatic), 3.28 (m, 1H, J = 3.2 Hz, C-H aliphatic), 2.4 (s, 3H, CH₃-C=H), 1.38 (d, 6H, J = 1.38 Hz, CH₃-C-H). **¹³C NMR (TFA-d, 600 MHz at 25°C)** δ (ppm) = 151.9 (d, 1C, =C-OH), 139.4 (d, 1C, C=C aromatic), 134.5 (s, 1C, C=C aromatic), 128.3 (d, 1C, C=C aromatic), 125.6 (m, 1C, C=C aromatic), 118.6 (m, 1C, C=C aromatic), 28.22 (s, 1C, C-H aliphatic), 23.71 (s, 2C, CH₃-C-H), 21.6 (d, 1C, CH₃-C=H).

Vanillin: **¹H NMR (TFA-d, 600 MHz at 25°C)** δ (ppm) = 9.67 (s, 1H, CH=O), 7.61 (d, 2H, J = 7.6 Hz, =C-H aromatic), 7.14 (d, 1H, J = 7.13 Hz, =C-H aromatic), 4.01 (s, 3H, O-CH₃ aliphatic). **¹³C NMR (TFA-d, 600 MHz at 25°C)** δ (ppm) = 198.4 (S, 1C, CH=O), 155.2 (s, 1C, =C-C aromatic), 150.07 (s, 1C, C=C aromatic), 132.3 (s, 1C, C=C aromatic), 131.09 (s, 1C, C=C aromatic), 117.1 (s, 1C, C=C aromatic), 112.5 (s, 1C, C=C aromatic), 57.6 (s, 1C, O-CH₃ aliphatic).

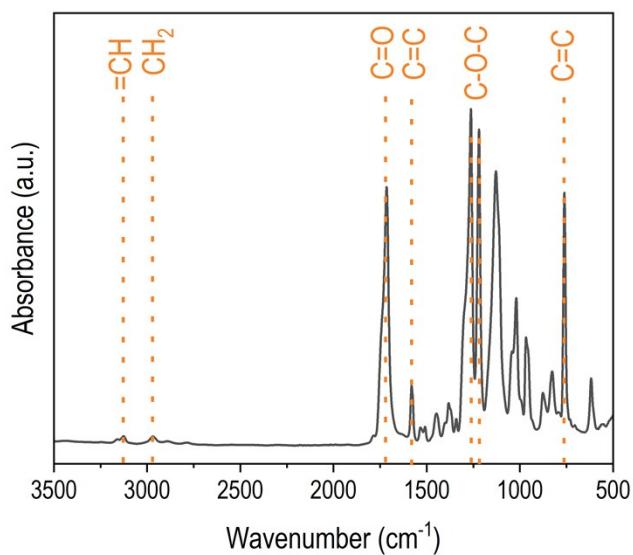
Life Cycle Assessment (LCA) methodology.

In compliance with ISO 14040 and 14044 standards,^{1,2} the present LCA analysis encompassed four phases: (i) goal and scope definition, including selection of the functional unit (FU) and system boundaries; (ii) life cycle inventory (LCI) analysis, documenting all material and energy inputs and outputs; (iii) life cycle impact assessment (LCIA), which evaluates the significance of each process and impact category; and (iv) interpretation of LCIA results, facilitating the selection of the optimal product or processes within the study's objectives and boundaries.

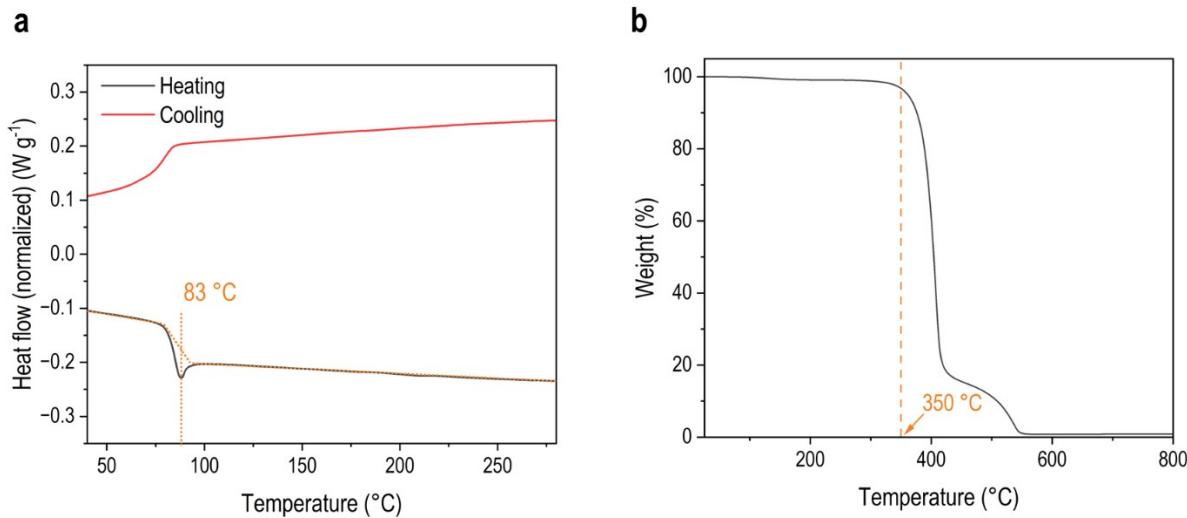
Goal and Scope. As depicted in Fig. 4, a cradle-to-gate analysis was conducted, including the industrial production of material and energy inputs, the membrane production at the laboratory scale, and waste generation from membrane fabrication. The fabrication parameters were selected based on experimental data for PEF and on the reported values for a PET membrane with a molecular weight cut-off in the ultrafiltration range (Supplementary Tables 9 and 11). 1 m² of free-standing polymer membrane was selected as FU, considering a weight/area ratio of 33.9 g m⁻² based on experimental measurements. The LCA was performed using LCA for Experts software version 10.9.1.17 with its 2025.1 version database and ecoinvent 3.9.1 cut-off database.


Life Cycle Inventory. We relied on “Rest of the World” or “Global” market datasets from the selected databases to account for transportation of materials from their production sites to the membrane fabrication facility. Some elements excluded from the study are the production of capital goods for equipment manufacturing (machines and facilities) and internal transport. An upscaling approach was applied for PEF synthesis, solvent distillation, and thymol crystallization based on Piccino et al.³ The detailed inventory, datasets, assumptions and allocation used in each individual process can be found in the Supplementary Tables 9 to 26.

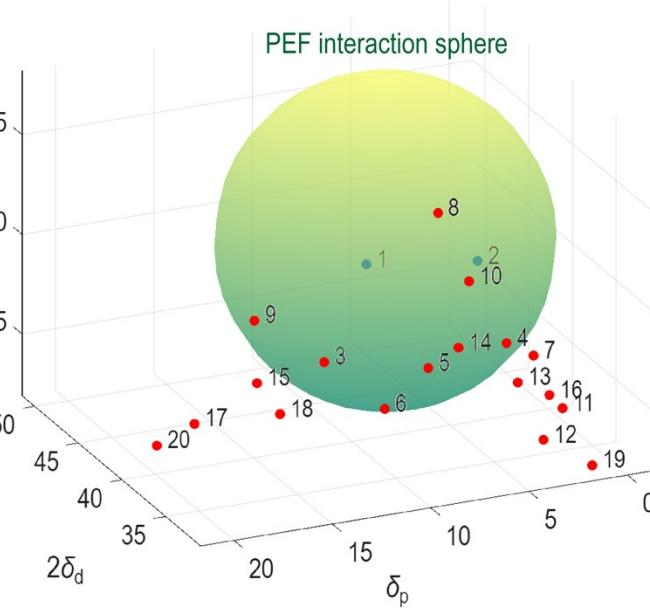
Life Cycle Impact Assessment. Nineteen environmental indicators from the ReCiPe 2016 v1.1 (H) midpoint method were employed in this analysis. The potential impact categories assessed were Global Warming Potential (GWP) excluding biogenic carbon over 100 year time horizon [kg CO₂ eq.]; GWP including biogenic carbon [kg CO₂ eq.]; fine particulate matter formation [kg PM2.5 eq.]; fossil depletion [kg oil eq.]; freshwater consumption [m³]; freshwater ecotoxicity [kg 1,4 DB eq.]; freshwater eutrophication [kg P eq.]; human toxicity, cancer [kg 1,4-DB eq.]; human toxicity, non-cancer [kg 1,4-DB eq.]; ionizing radiation [kBq Co-60 eq. to air]; land use [Annual crop eq.·y]; marine ecotoxicity [kg 1,4-DB eq.];


marine eutrophication [kg N eq.]; metal depletion [kg Cu eq.]; photochemical ozone formation, ecosystems [kg NOx eq.]; photochemical ozone formation, human health [kg NOx eq.]; stratospheric ozone depletion [kg CFC-11 eq.]; terrestrial acidification [kg SO₂ eq.]; and terrestrial ecotoxicity [kg 1,4-DB eq.].

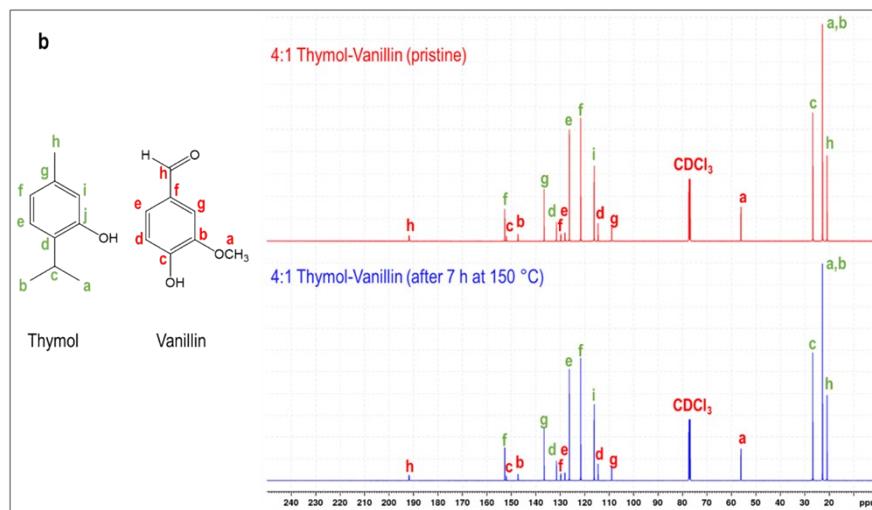
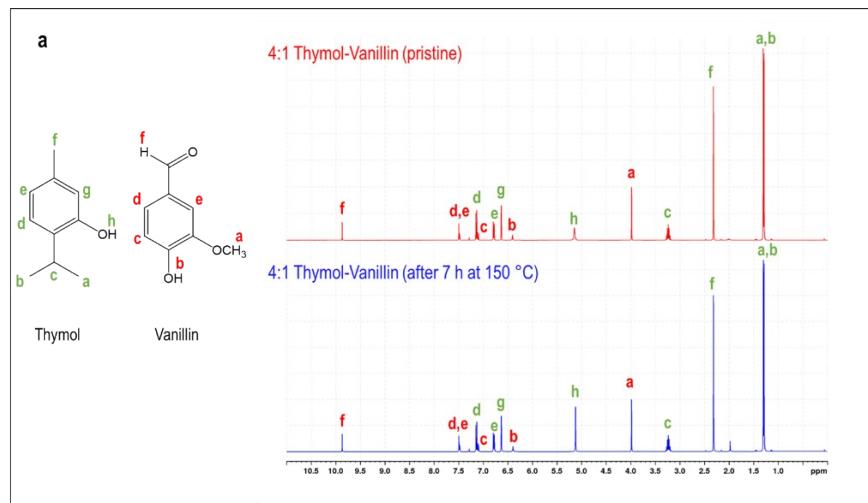
Scenarios investigated. Four different types of parameter changes were explored in this study (Supplementary Tables 6 and 7): (1) extraction technology within thymol production; (2) source of nonsolvent (ethanol) for the coagulation bath, (3) treatment of the waste solvents and polymer residue resulting from the membrane fabrication process, and (4) electricity grid mix during membrane production. Supercritical fluid extraction and hydrodistillation were evaluated as thymol extraction technologies. Fossil-based or bio-based ethanol from fermentation was modeled as the coagulation bath during membrane production. Incineration with and without energy recovery and internal recycling were considered to treat the waste solvents and polymer produced during membrane fabrication. Four different electricity and thermal energy geographical scopes were explored, namely global average, North America, Europe, and the Middle East. The baseline scenario was a combination of the following parameters: supercritical fluid extraction during thymol production, fossil-based ethanol in the coagulation bath, incineration of the solvents and polymer residue with energy recovery, all under a global average electricity mix and thermal energy production from natural gas. The same parameters were applied to PET-based membranes for comparison purposes. By varying each parameter, we identified the scenario with the lowest environmental footprint.


2. Supplementary Figures

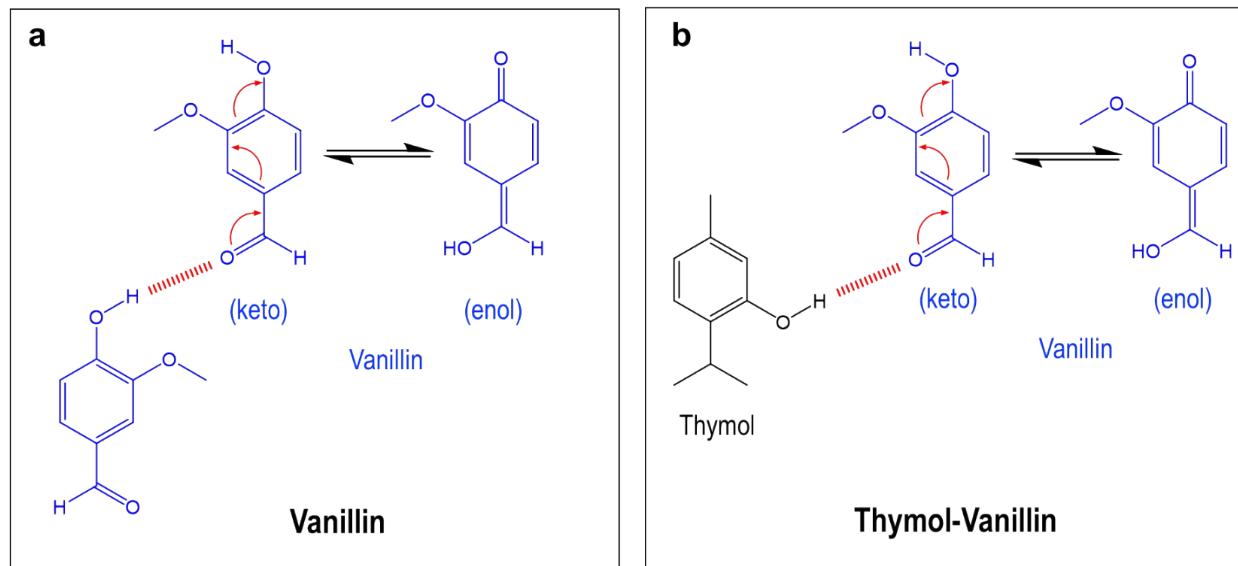
Supplementary Figure 1. Chemical structures and reactions for PEF membrane production. a, Solvents: thymol, and vanillin. b, PEF synthesis reaction.

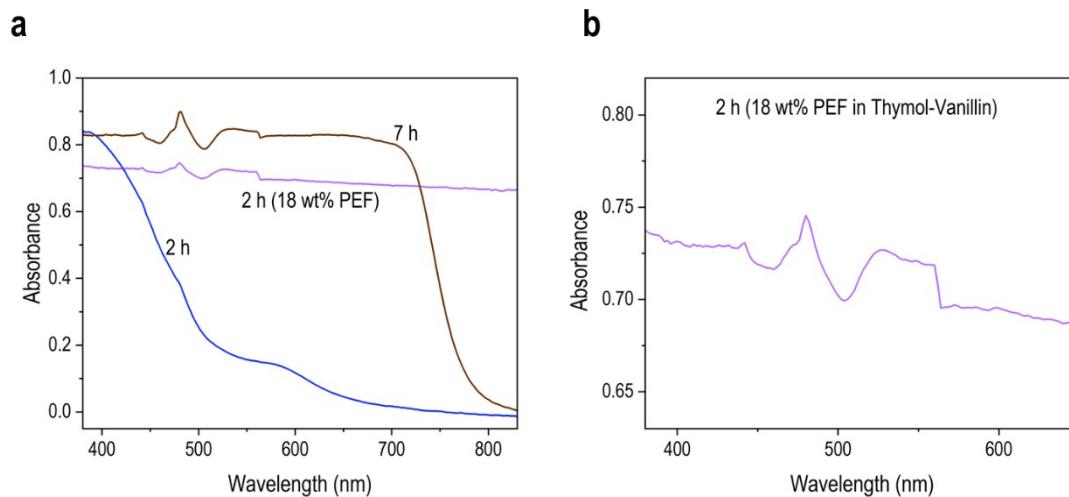


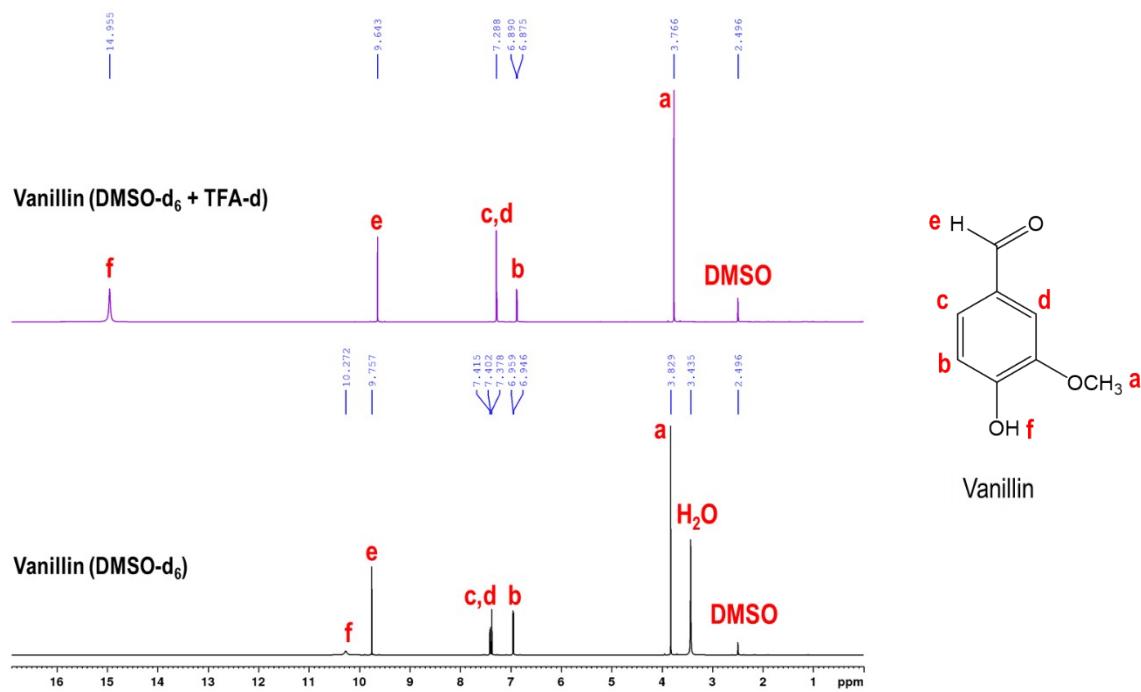
Supplementary Figure 2. FTIR analysis of the synthesized PEF. The sample exhibited the characteristic peaks of $\text{C}=\text{C}$ bending at 761 cm^{-1} , $\text{C}-\text{O}-\text{C}$ stretching at 1220 and 1263 cm^{-1} , $\text{C}=\text{C}$ stretching at 1581 cm^{-1} , $\text{C}=\text{O}$ stretching at 1715 cm^{-1} , CH_2 at 2975 cm^{-1} , and $=\text{CH}$ (furan ring) at 3128 cm^{-1} .

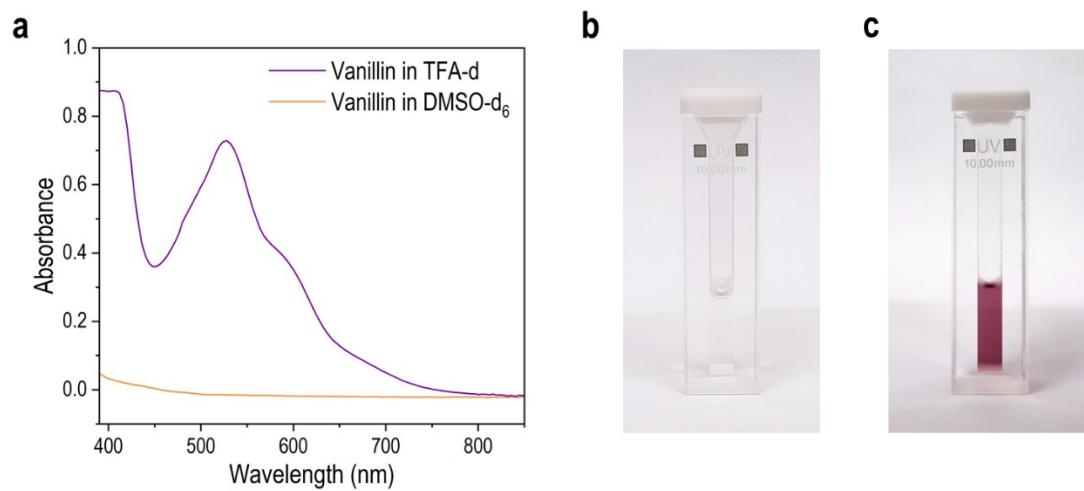



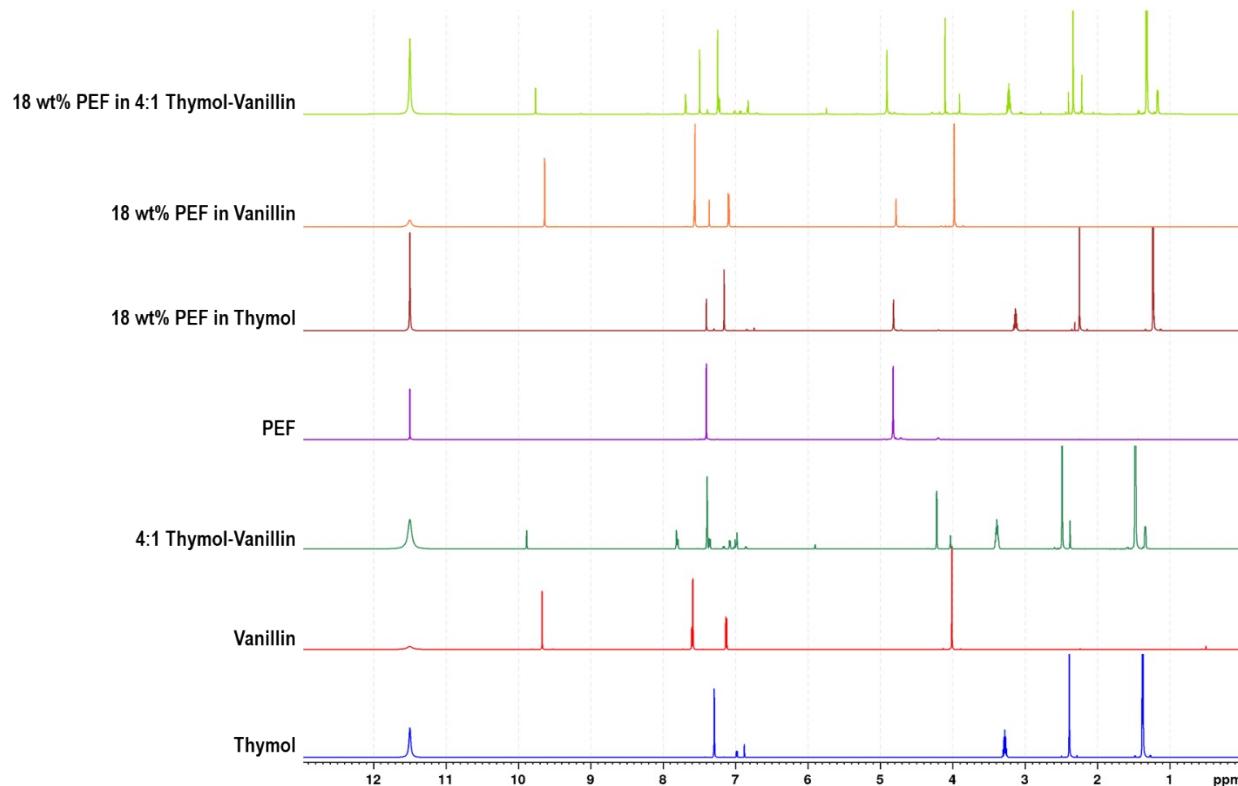
Supplementary Figure 3. Thermal analysis of the synthesized PEF. **a**, Differential Scanning Calorimetry (DSC) analysis of PEF heating/cooling at a rate of $10\text{ }^{\circ}\text{C min}^{-1}$ and glass transition temperature identification ($83\text{ }^{\circ}\text{C}$). **b**, Thermogravimetric analysis (TGA) of PEF under nitrogen with a heating rate of $10\text{ }^{\circ}\text{C min}^{-1}$.

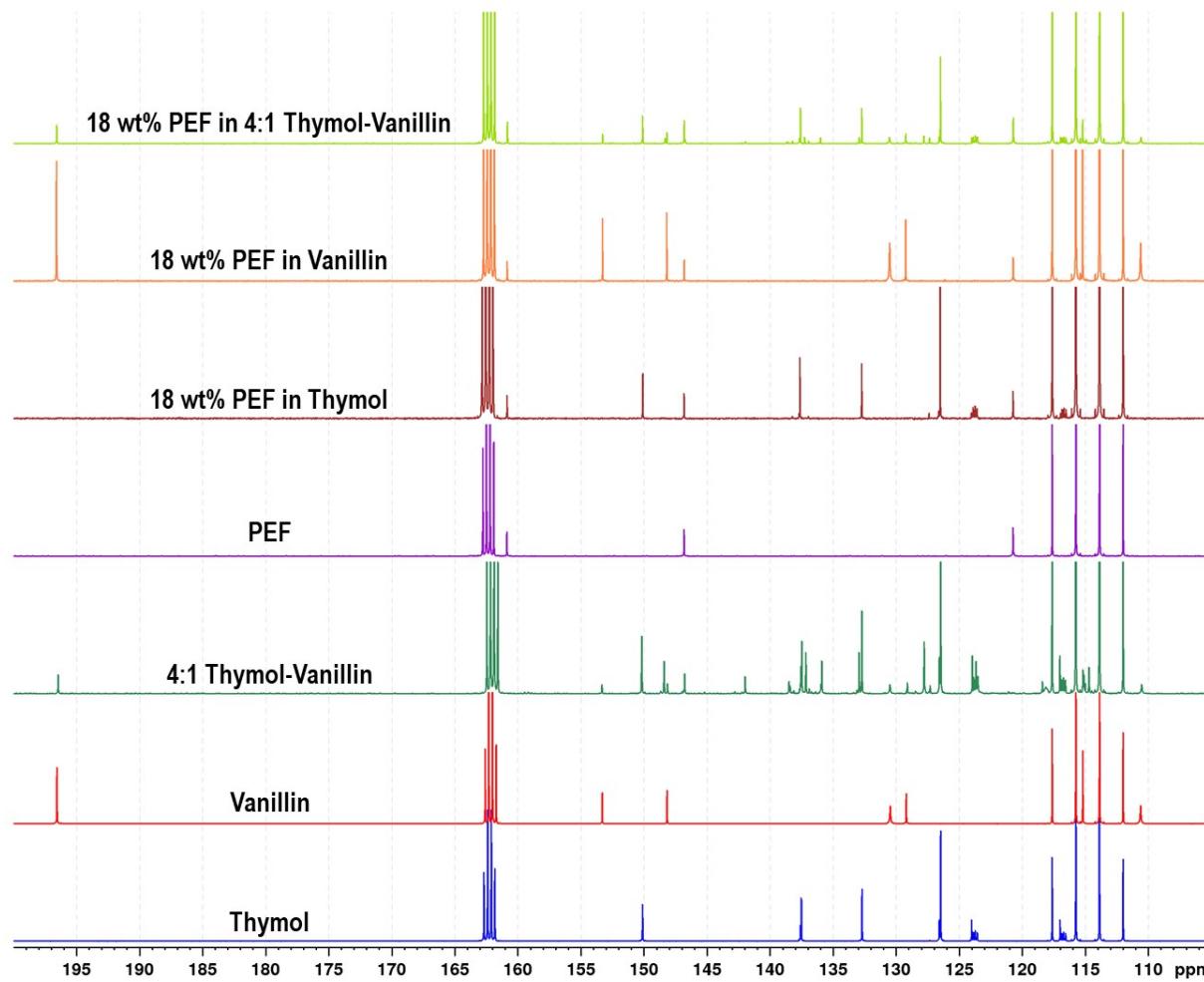

- [1] Vanillin
- [2] Thymol
- [3] Cyrene
- [4] Carvacrol
- [5] PolarClean
- [6] d-Camphor
- [7] Menthol
- [8] Methyl Lactate
- [9] Dimethyl Sulfoxide
- [10] Ethyl Lactate
- [11] d-Limonene
- [12] p-Cymene
- [13] Ethyl Acetate
- [14] Dimethyl Carbonate
- [15] γ -Butyrolactone (GBL)
- [16] n-Butyl Acetate
- [17] Propylene Carbonate
- [18] γ -Valerolactone (GVL)
- [19] (-)- α -Pinene
- [20] Ethylene Carbonate

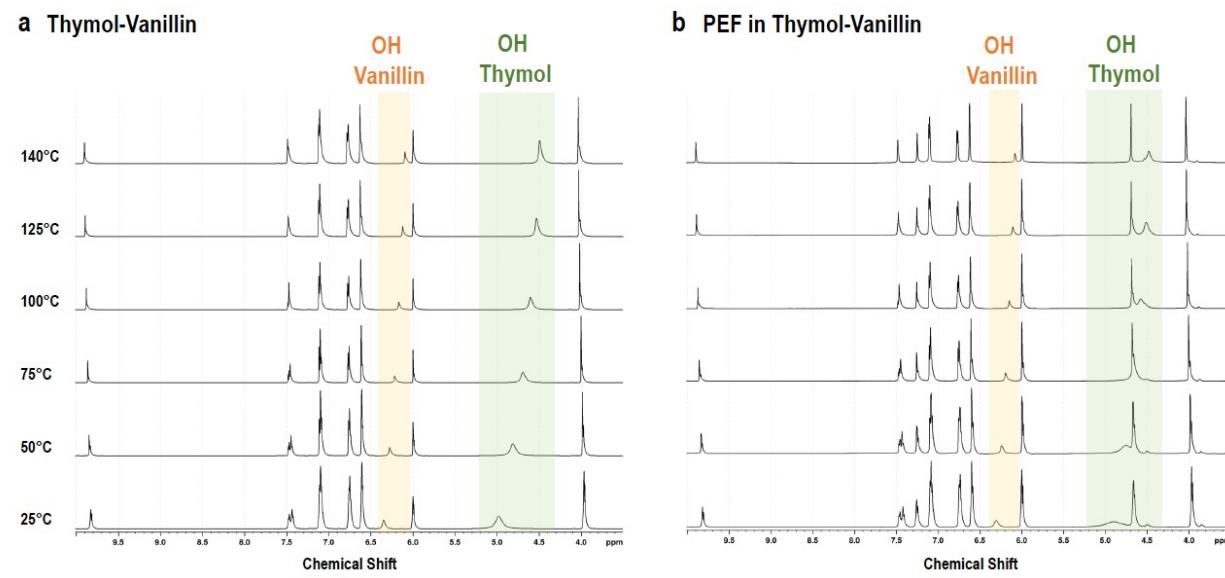

Supplementary Figure 4. PEF Hansen interaction sphere and green solvent screening. Solvents and PEF interaction sphere in the Hansen Solubility Parameters space. Blue dots are in the center of the sphere; red ones are in the periphery of the sphere.

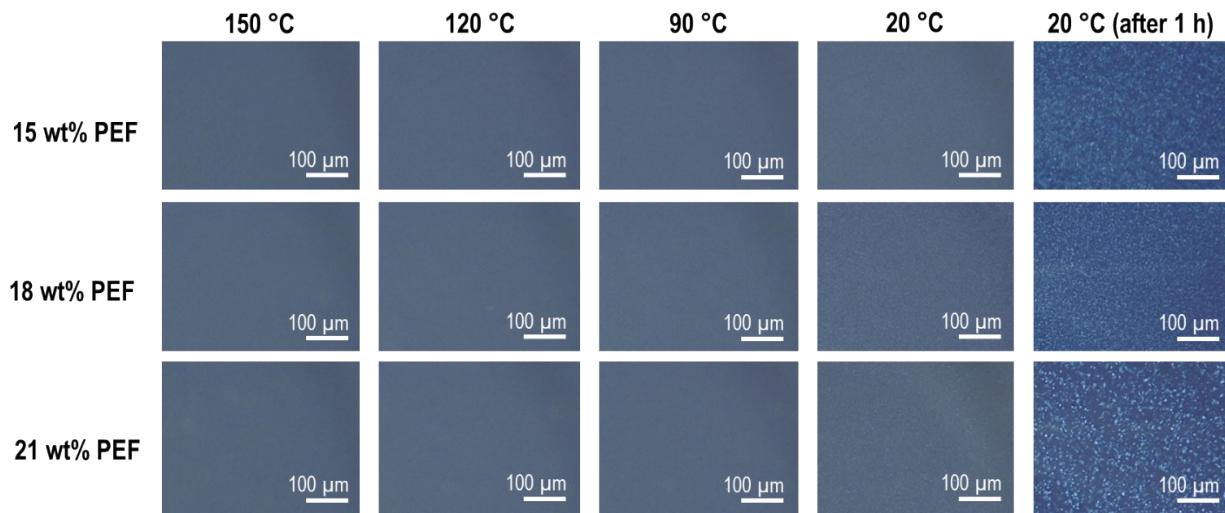

Supplementary Figure 5. NMR spectra of pristine and heated 4:1 thymol-vanillin solutions. a, ^1H NMR. b, ^{13}C NMR. Solutions preparation started with mixing 4:1 molar ratio thymol-vanillin at 90 °C for two hours and cooling it down to room temperature (20 °C). The spectrum referred to as 'pristine' corresponds to a sample retrieved at that moment. The second spectrum corresponds to the previous thymol-vanillin solution heated at 150 °C for seven hours.


Supplementary Figure 6. Vanillin hydrogen bond and tautomerism in solution. Vanillin keto and enol tautomers in different solutions: **a**, Vanillin. **b**, Thymol-vanillin solution.

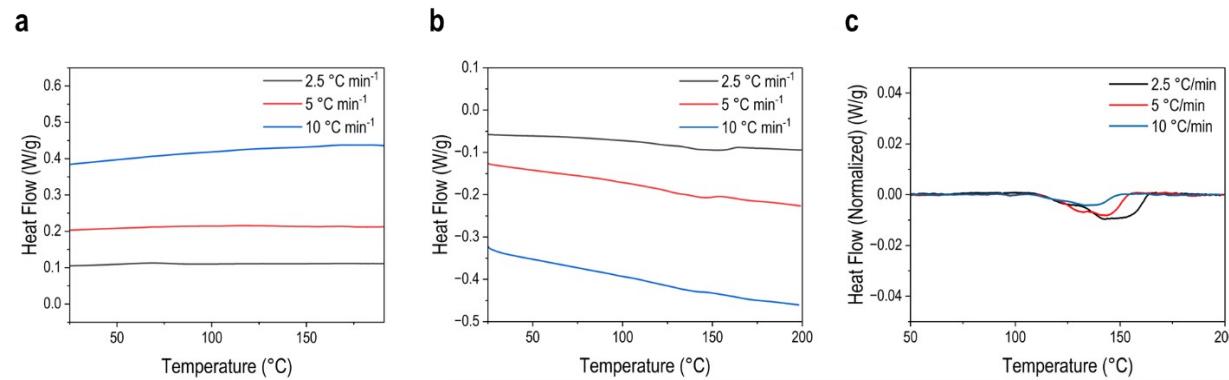

Supplementary Figure 7. UV-Vis spectra of 4:1 thymol-vanillin solutions. **a**, Comparison between thymol-vanillin solutions heated at 150°C for two and seven hours and an 18 wt% PEF solution in 4:1 thymol-vanillin heated at 150°C for two hours. **b**, Amplified UV-Vis spectra of an 18 wt% PEF solution in 4:1 thymol-vanillin heated at 150°C for two hours. All solutions preparation started with mixing 4:1 molar ratio thymol-vanillin at 90 °C for two hours and cooling it down to room temperature (20 °C). 18 wt% PEF was added to the thymol-vanillin solution at room temperature. The mixture was then heated to 150 °C for two hours for full solubilization of the polymer. The solution was cooled down to 20 °C inside a quartz cuvette to record the spectra. The samples of pure thymol-vanillin solutions were heated to 150 °C for different timespans (2, 6, and 7 hours) to mimic the heating required for PEF solubilization and then cooled down to 20 °C to record the spectra in a quartz cuvette.

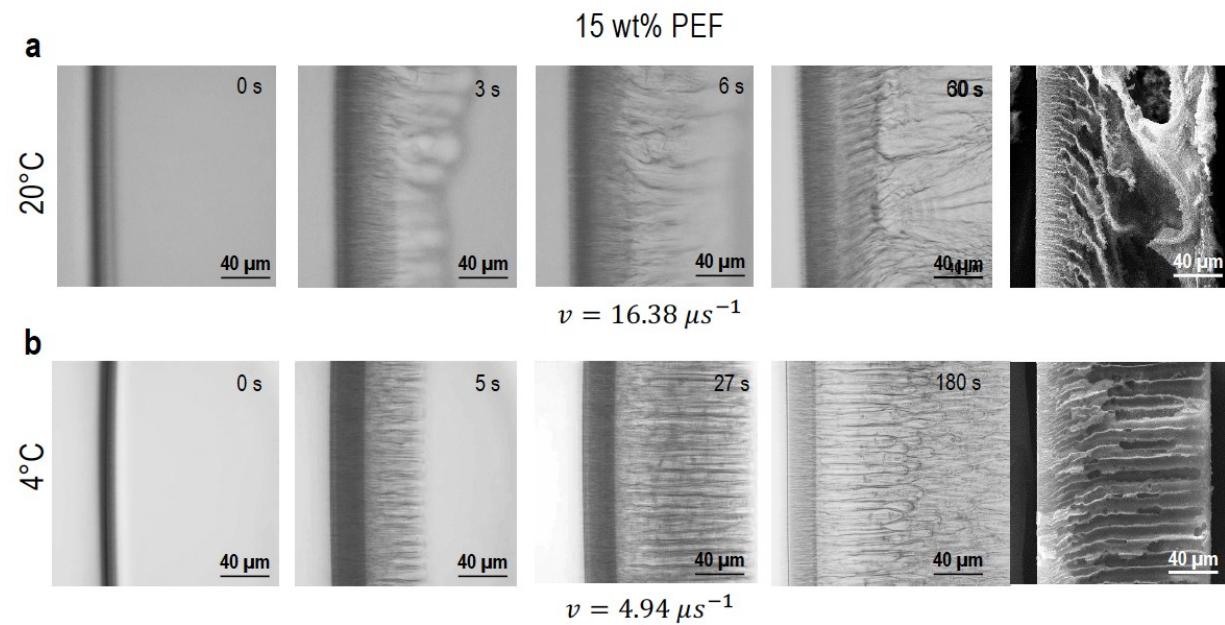

Supplementary Figure 8. ^1H NMR spectra of pure vanillin solutions. Vanillin was dissolved in deuterated dimethyl sulfoxide (DMSO-d_6) or DMSO-d_6 with few drops of deuterated trifluoroacetic acid (TFA-d). The spectra shows a chemical shift for the hydroxyl group signal, denoting a strong hydrogen bonding. We further studied the color change of vanillin by the addition of trifluoroacetic acid (TFA), which has been utilized to prove the utility of vanillin-based derivatives as fluorine ion chemosensors. The ^1H NMR spectra of pure vanillin in DMSO-d_6 with a small amount of TFA-d shows a shift of the -OH signal from vanillin downfield from 10.27 to 14.96 ppm, caused by proton deshielding due to interaction with the highly electronegative fluorine atom⁴.

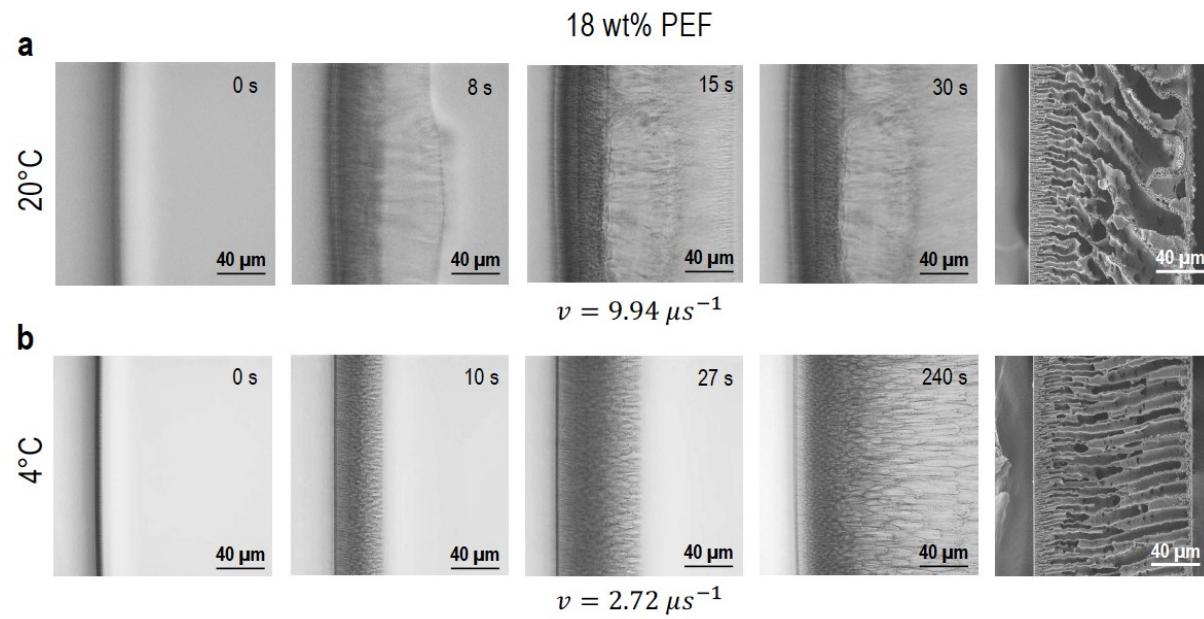

Supplementary Figure 9. Color change in pure vanillin solutions. **a**, UV-Vis spectra of vanillin in deuterated trifluoroacetic acid (TFA-d) or deuterated DMSO (DMSO-d₆). **b**, Photograph of the vanillin solution in DMSO-d₆. **c**, Photograph of the vanillin solution in TFA-d.

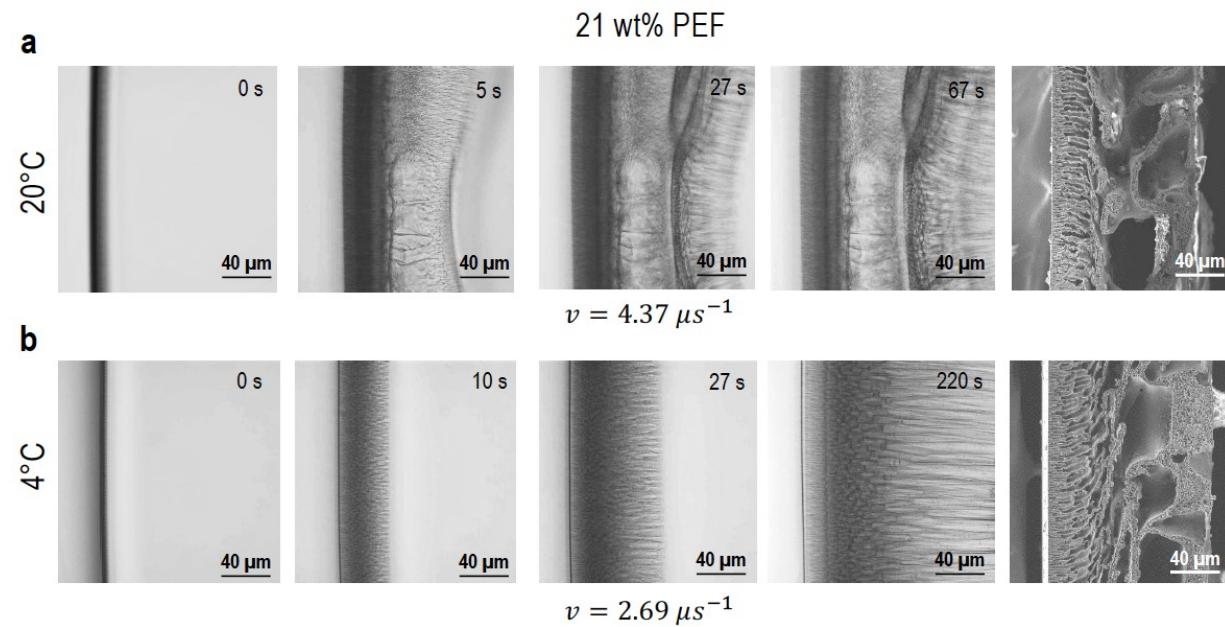

Supplementary Figure 10. ^1H NMR of PEF solutions and single components. 18 wt% PEF solutions in thymol-vanillin, vanillin and thymol were diluted in deuterated trifluoroacetic acid. The solvent signal at 11.5 was used for axis calibration. The PEF and PEF solutions spectra show the characteristic peaks of CH at 7.4 ppm and CH₂ at 4.8 ppm. Thymol exhibits peaks for CH₃ at 1.4 and 2.4 ppm, CH at 3.3 and 7.3 ppm. Vanillin exhibits peaks for CH₃ at 4.0 ppm, CH (aromatic ring) at 7.1 and 7.6 ppm, and CH=O at 9.7 ppm. The OH signal for thymol and vanillin is absent due to the strong hydrogen bonding with TFA-d.

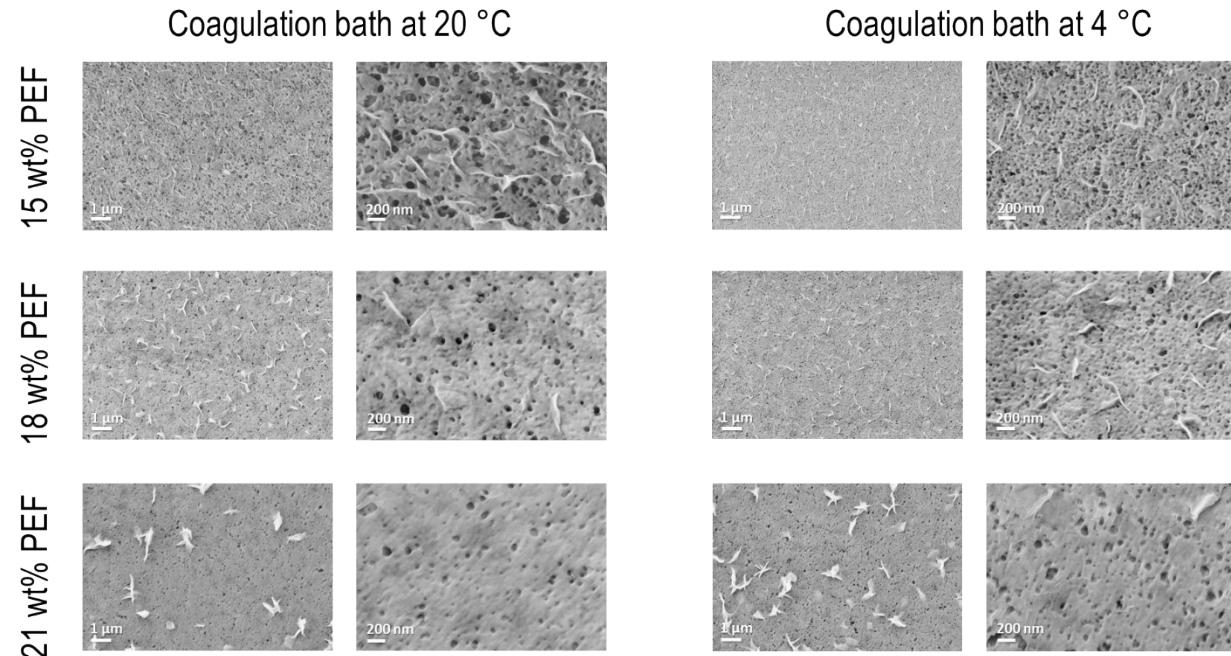
Supplementary Figure 11. ^{13}C NMR of PEF solutions and single components. 18 wt% PEF solutions in thymol-vanillin, vanillin and thymol were diluted in deuterated trifluoroacetic acid. The PEF and PEF solutions spectra show the characteristic peaks of CH at 146.57 ppm, C=O at 160.62 ppm. Pure thymol exhibits peaks for CH_3 at 20.9 and 23.5 ppm, CH at 28.0 ppm, CH from the aromatic ring at 118.6, 125.6, and 128.1 ppm, C from the C- CH_3 group at 139.1 ppm, and C from the C-OH group at 151.7 ppm. Vanillin exhibits peaks for CH_3 at 57.4, CH (aromatic ring) at 112.3, 116.9, and 130.9 ppm, C in the aromatic ring at 132.2, 149.9, and 155.0 ppm, and CH=O 198.2 ppm.

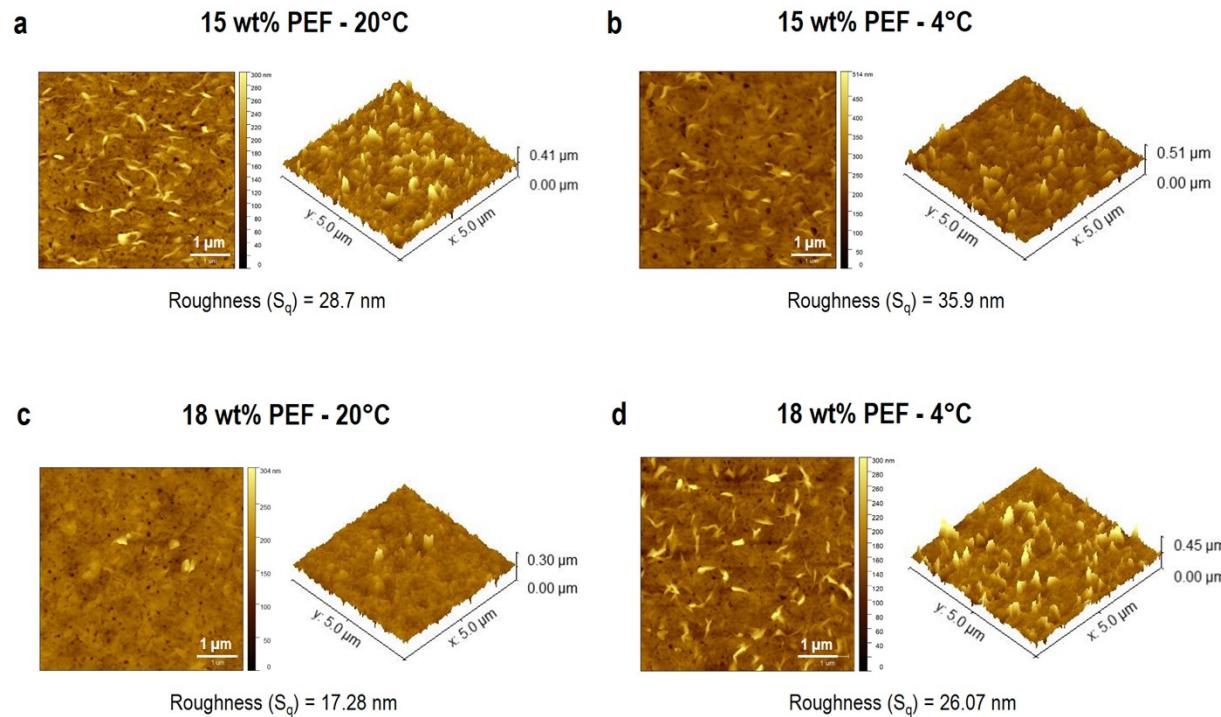

Supplementary Figure 12. ^1H NMR investigation of hydrogen bond as a function of temperature. **a**, thymol-vanillin and **b**, PEF in thymol-vanillin. OH signal for vanillin at 6.0 to 6.5 ppm and for thymol at 4.3 to 5.2 ppm. Experiments conducted on a Bruker Avance III operating at 600 MHz with 1,1,2,2-tetrachloroethane-d2 as deuterated solvent.

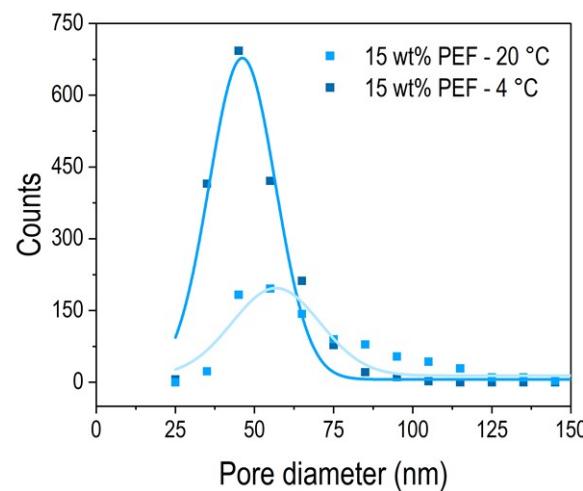
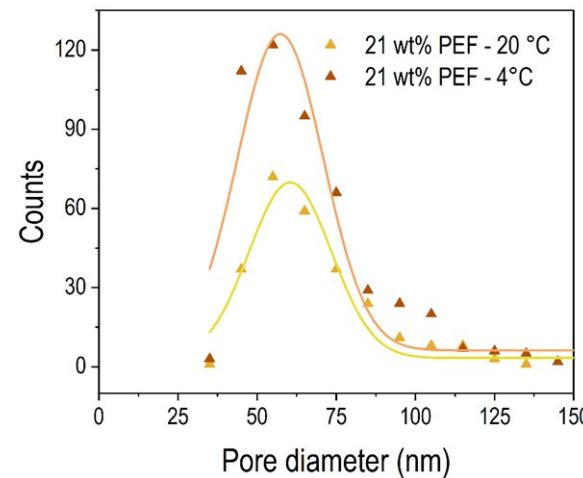

Supplementary Figure 13. Optical micrographs of PEF solutions with polarizer. Solutions of 18 wt% PEF in 4:1 molar ratio thymol-vanillin were heated 150 °C until PEF was fully solubilized. After that, one drop of approximately 2 μ l was placed on a 1 mm thick microscope glass slide and covered with a 0.1 mm thick glass at room temperature. The sample was then placed inside a heating stage and heated to 150 °C at a rate of 50 °C min⁻¹. Then, it was cooled down to 20 °C at a rate of 50 °C min⁻¹ to mimic the rapid cooling taking place during membrane fabrication, and a video was recorded. A light polarizer filter was used to observe the presence of crystalline nuclei in the case that thermally induced phase separation took place.

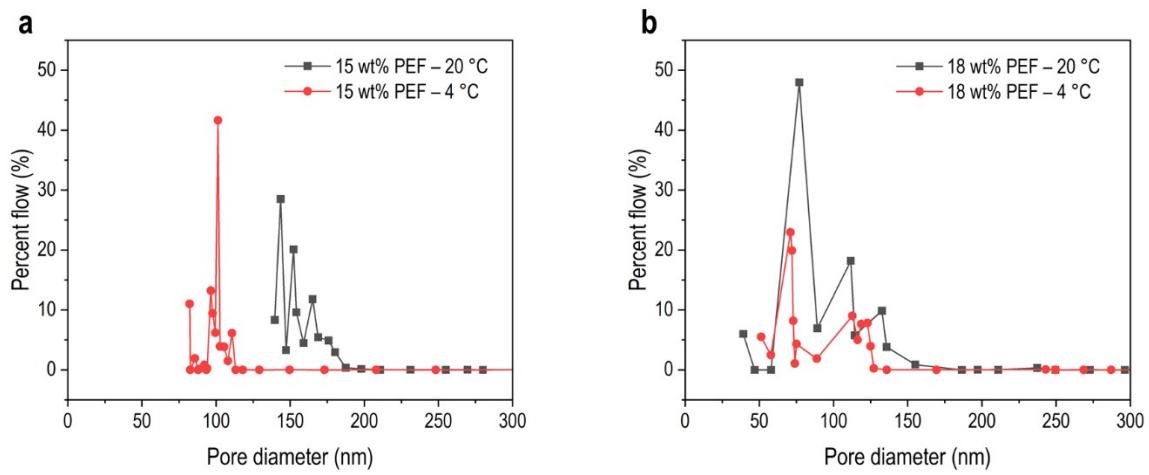

Supplementary Figure 14. XRD diffractogram of a PEF membrane sample. The resulting curve denotes an amorphous polymer structure.

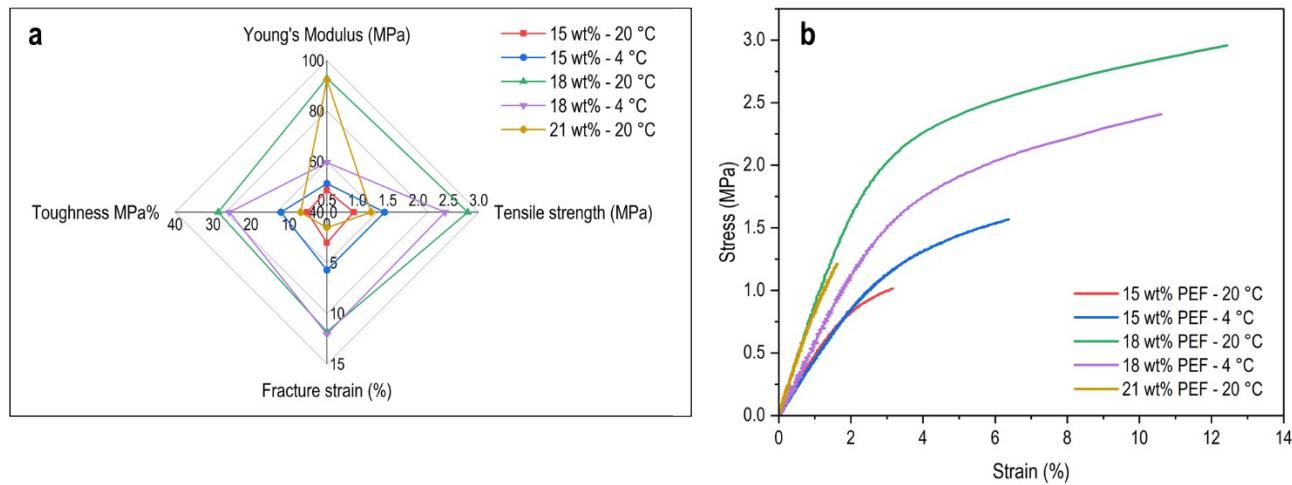

Supplementary Figure 15. DSC analysis of 18 wt% PEF solutions in 4:1 thymol-vanillin. **a**, Heat flow for solution cooling from 200 °C to 20 °C at different cooling rates. **b**, Heat flow for solution heating from 20 °C to 200 °C at different heating rates (second heating). **c**, Normalized heat flow for solution heating from 20 °C to 200 °C at different heating rates (second heating). Solutions of 18 wt% PEF in 4:1 M thymol-vanillin were prepared at 150 °C. After that, samples of approximately 10 mg were placed inside an aluminum hermetic pan at 20 °C and sealed. The DSC experiments were carried out with nitrogen gas. The results show indication of polymer melting at around 150 °C in the normalized heating curves, result of the crystallization happening during the 5 min isothermal step at room temperature prior to heating.


Supplementary Figure 16. Phase separation of 15 wt% PEF in 4:1 thymol-vanillin induced by solvent-ethanol exchange. a, Ethanol at 20 °C. b, Ethanol at 4 °C. The polymer solution demixing rate (v) was calculated by measuring how fast the demixing front moves (distance between the initial position to the front position per time).

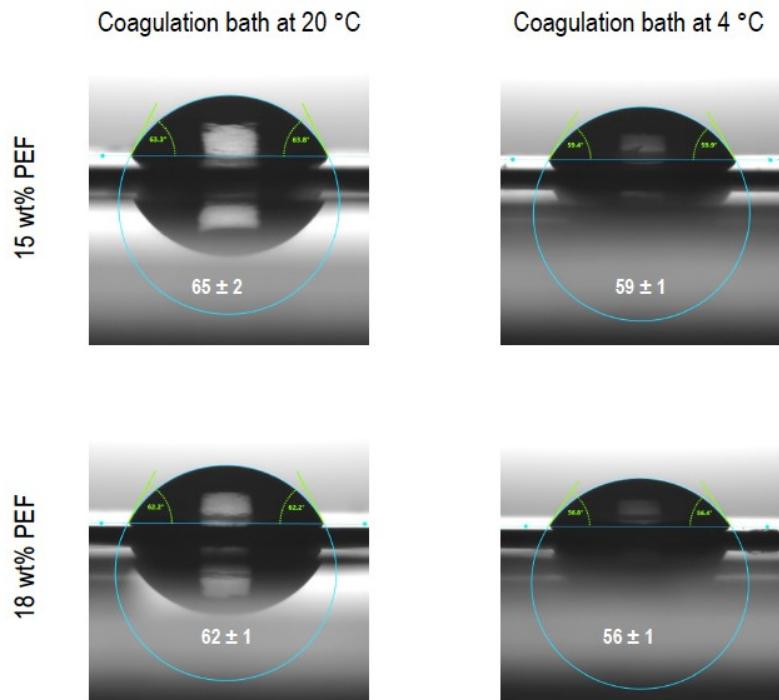

Supplementary Figure 17. Phase separation of 18 wt% PEF in 4:1 thymol-vanillin induced by solvent-ethanol exchange. a, Ethanol at 20 °C. b, Ethanol at 4 °C. The polymer solution demixing rate (v) was calculated by measuring how fast the demixing front moves (distance between the initial position to the front position per time).



Supplementary Figure 18. Phase separation of 21 wt% PEF in 4:1 thymol-vanillin induced by solvent-ethanol exchange. a, Ethanol at 20 °C. b, Ethanol at 4 °C. The polymer solution demixing rate (v) was calculated by measuring how fast the demixing front moves (distance between the initial position to the front position per time).


Supplementary Figure 19. Surface SEM micrographs of PEF membranes. Membranes prepared by casting 15, 18, or 21 wt% PEF solutions in 4:1 thymol-vanillin followed by immersion in ethanol at 20 °C or 4 °C.


Supplementary Figure 20. AFM analysis of PEF membranes. Membranes prepared by casting **a, b**, 15 wt% PEF and **c, d**, 18 wt% PEF solutions in 4:1 thymol-vanillin followed by immersion in ethanol at **a, c**, 20 °C or **b, d**, 4 °C.

a**b**

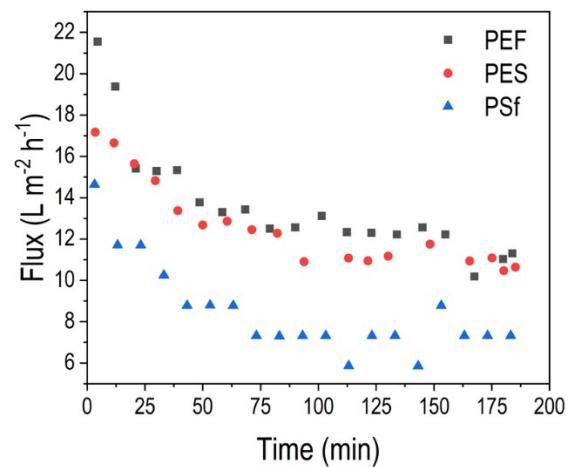
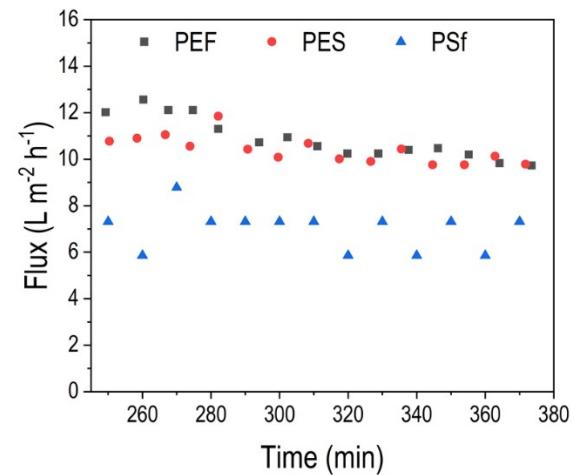

Supplementary Figure 21. Surface pore size distribution of PEF membranes. Membranes prepared from **a**, 15 wt% or **b**, 21 wt% PEF in 4:1 thymol-vanillin. Analysis performed via an AI-based image analysis model.

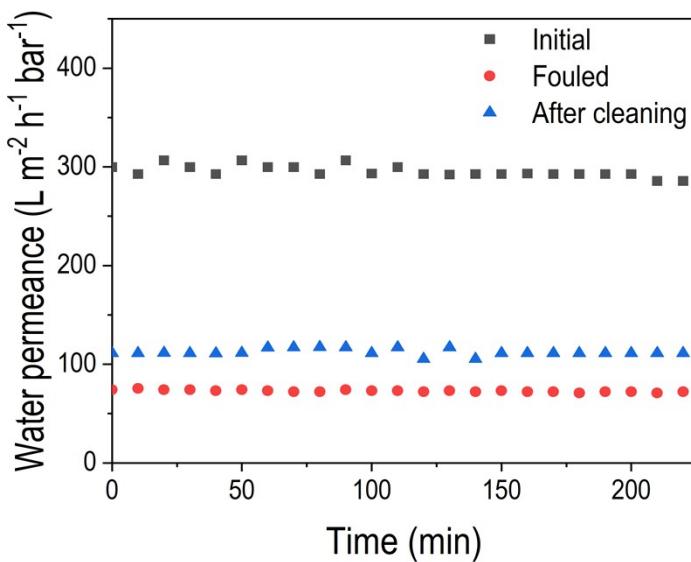
Supplementary Figure 22. Pore size distribution measured by gas-liquid displacement capillary flow porometry. Membranes prepared by casting **a**, 15 or **b**, 18 wt% PEF solutions in 4:1 thymol-vanillin followed by immersion in ethanol at 20 °C or 4 °C as the nonsolvent.

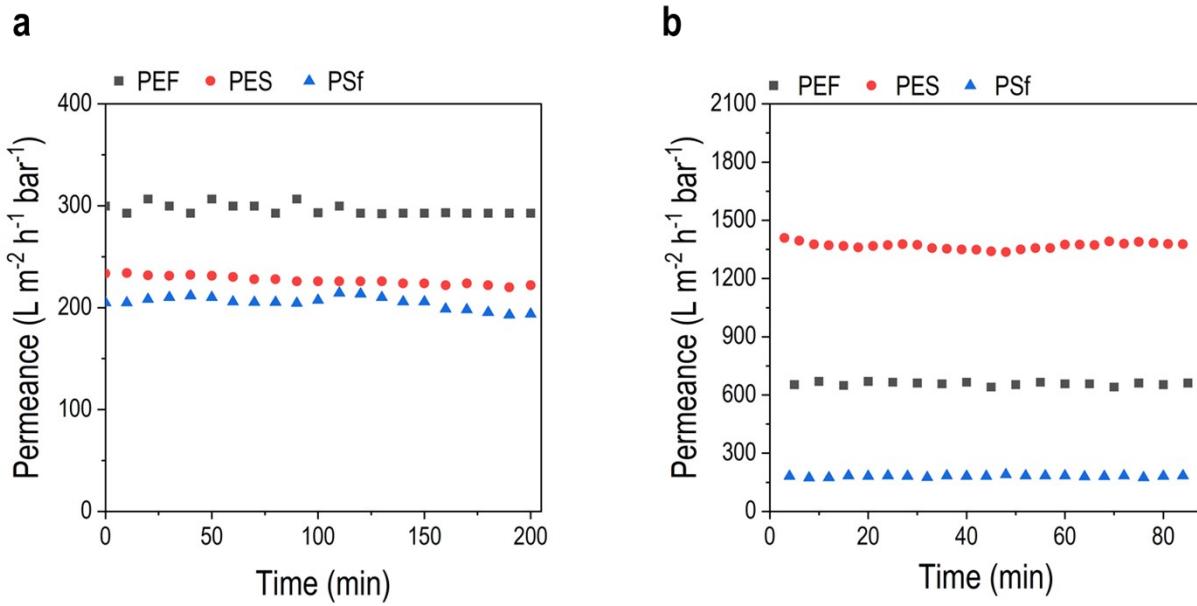
Supplementary Figure 23. Mechanical properties of PEF membranes. Membranes prepared by casting 15, 18 and 21 wt% PEF solutions in 4:1 thymol-vanillin, followed by immersion in ethanol at 20°C or 4 °C.

Supplementary Figure 24. Contact angle of PEF membranes. Membranes prepared by casting 15 and 18 wt% PEF solutions in 4:1 thymol-vanillin followed by immersion in ethanol at 20 °C or 4 °C.

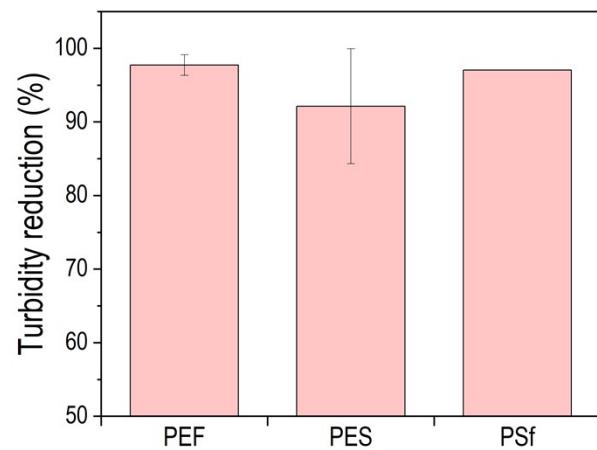
Pomegranate juice

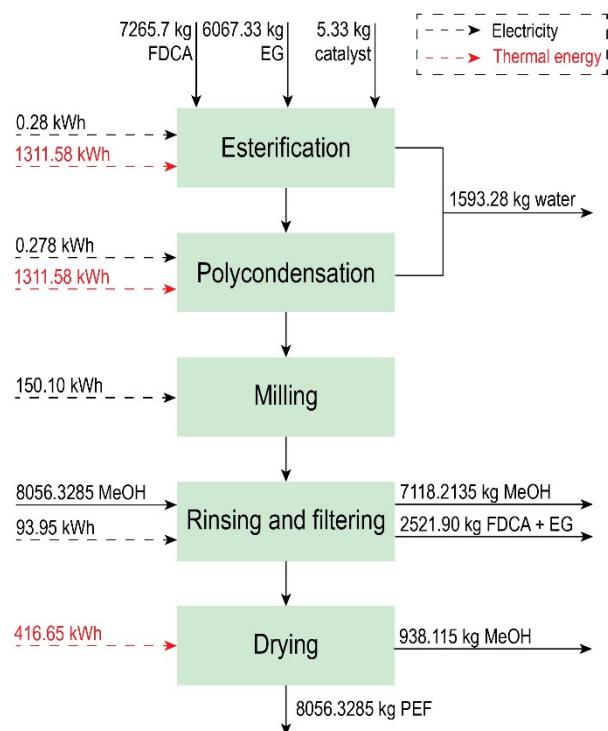


Apple juice

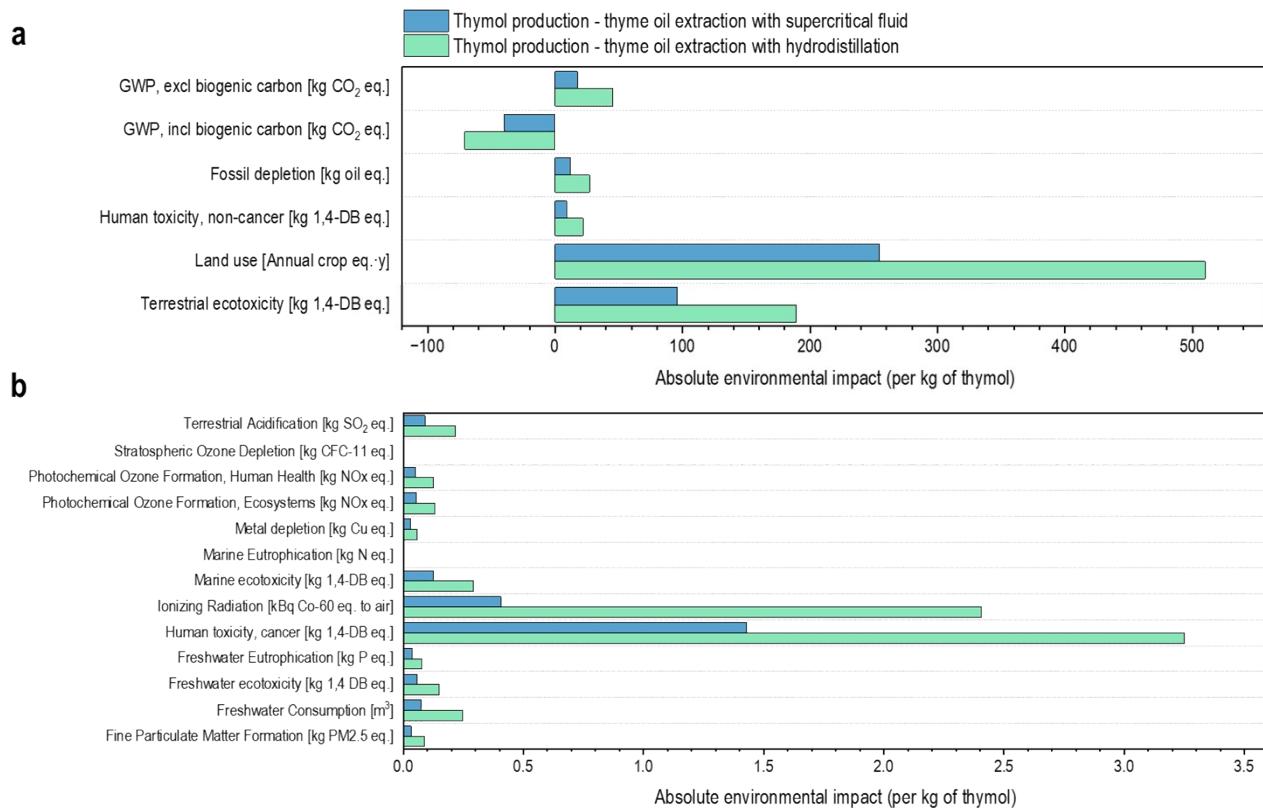

Orange juice

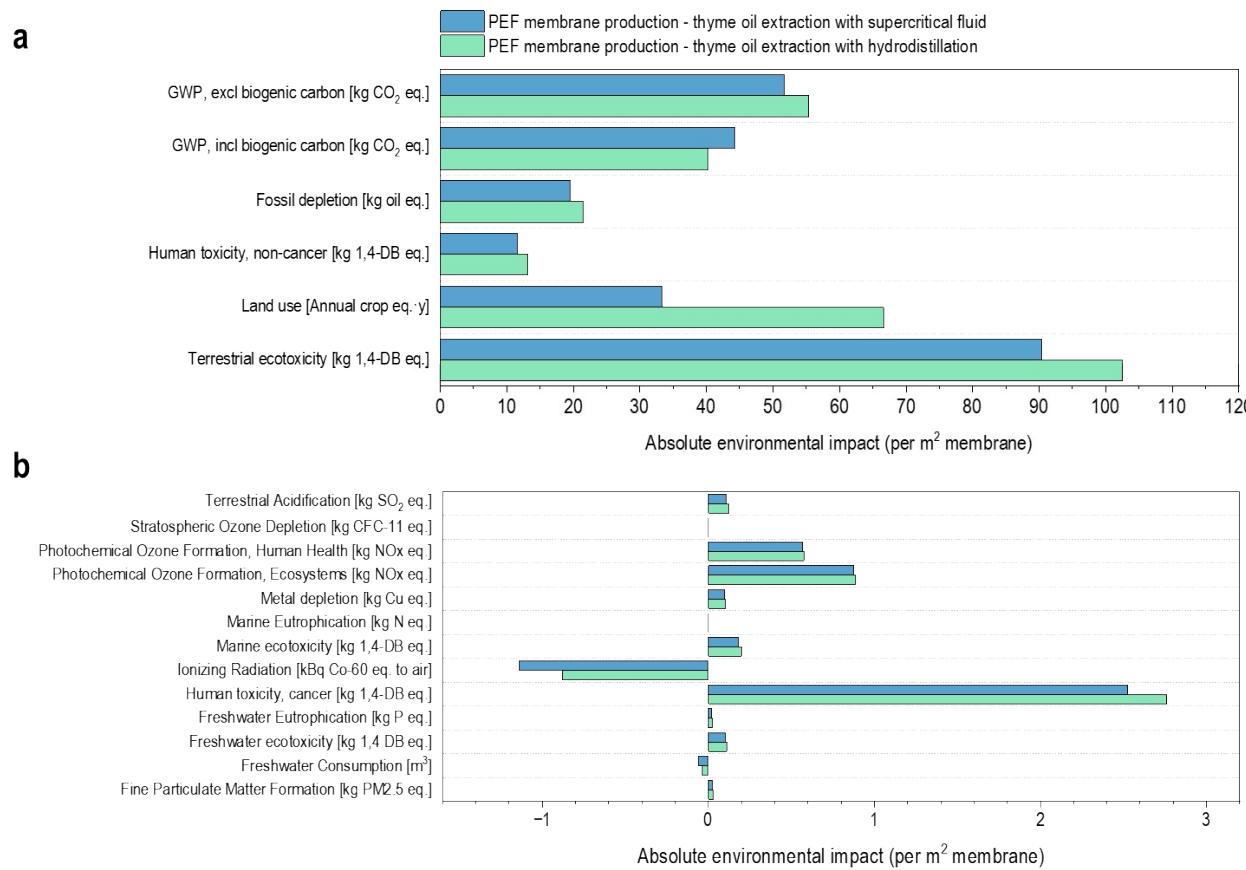

Supplementary Figure 25. Photographs of juice feed.

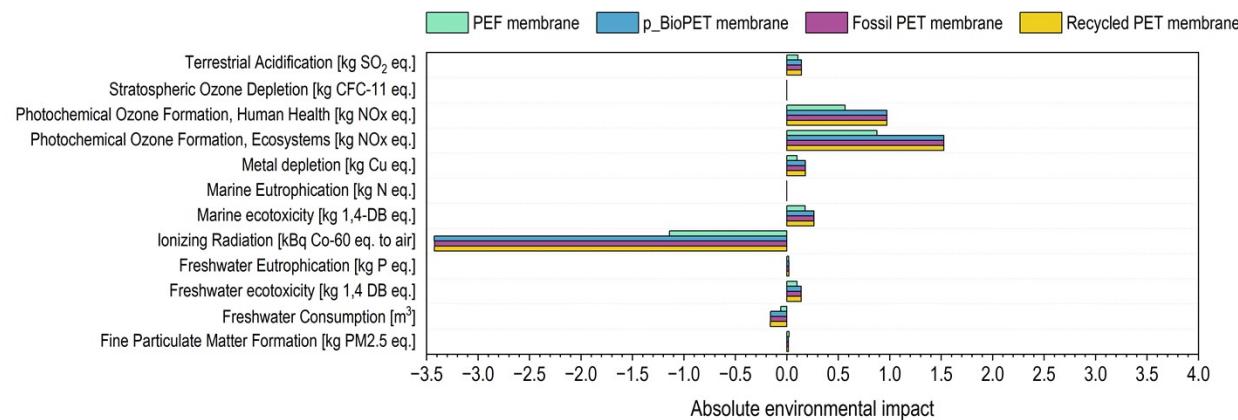
a**b**

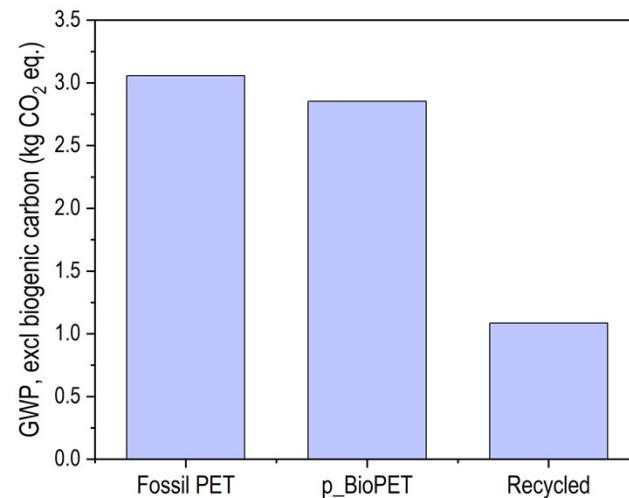

Supplementary Figure 26. Pomegranate juice flux for PEF, PES, and PSf membranes. Filtrations carried out in dead-end configuration with a pressure of 0.2 bar.

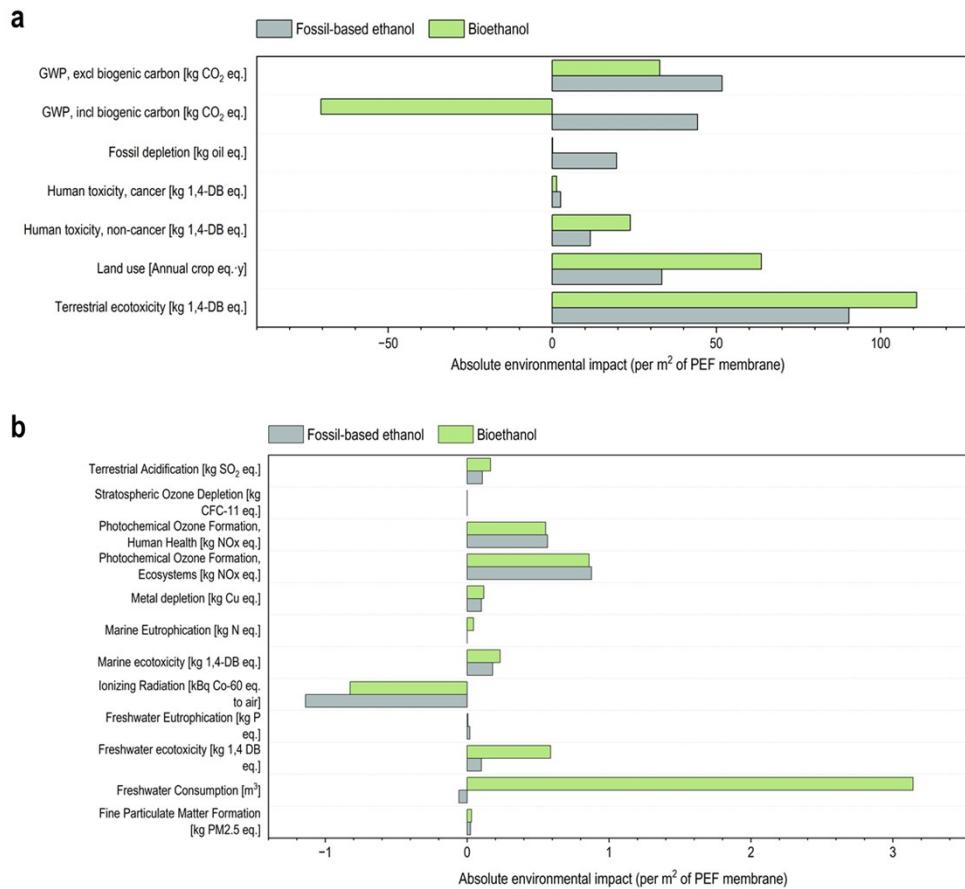

Supplementary Figure 27. Effect of membrane fouling and backwashing on PEF water permeance. The PEF membrane was used for pomegranate juice filtration until achieving a weight reduction factor of four. The membrane backwashing was carried out by flipping the membrane within the filtration cell and permeating MiliQ water for 30 minutes with a pressure of 0.4 bar.

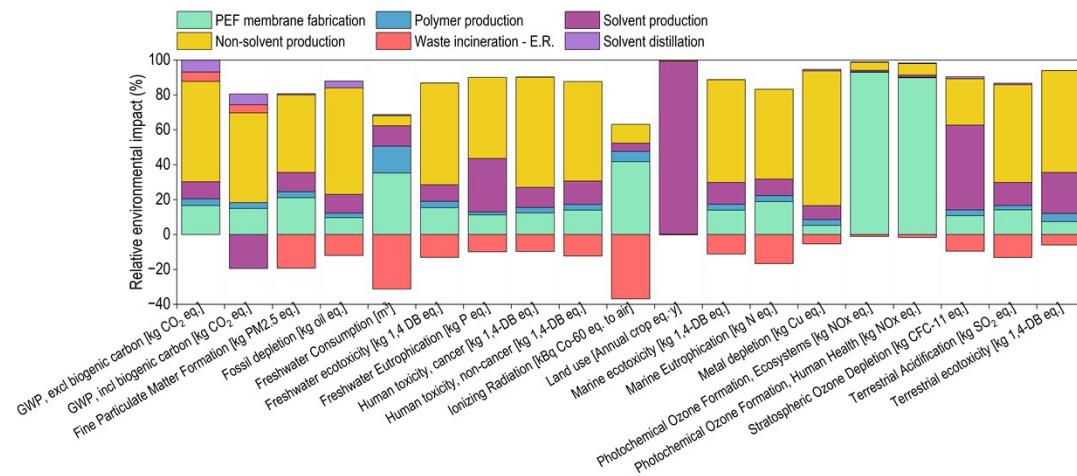

Supplementary Figure 28. Water permeance comparison of polymeric membranes. Water flux of the optimized PEF membrane (18 wt% PEF in thymol-vanillin precipitated in 4°C ethanol), and commercial polyethersulfone (Synder MK-30 kDa) and polysulfone (Solecta M-PS20-GPP) in **a**, dead-end, and **b**, cross-flow configuration.

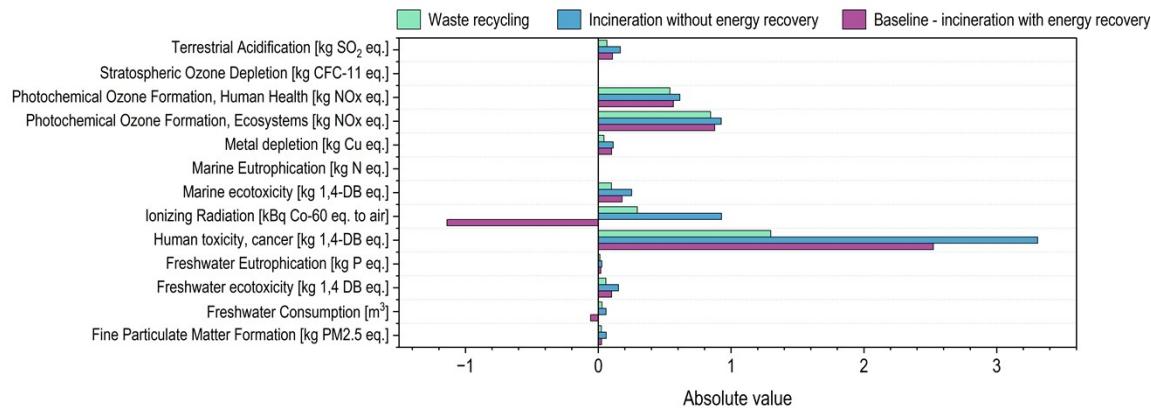

Supplementary Figure 29. Juice turbidity reduction in pomegranate juice after clarification with the optimized PEF membrane or commercial PES and PSf membranes. Filtrations carried out in dead-end configuration with a pressure of 0.2 bar until reaching a weight reduction factor of four.

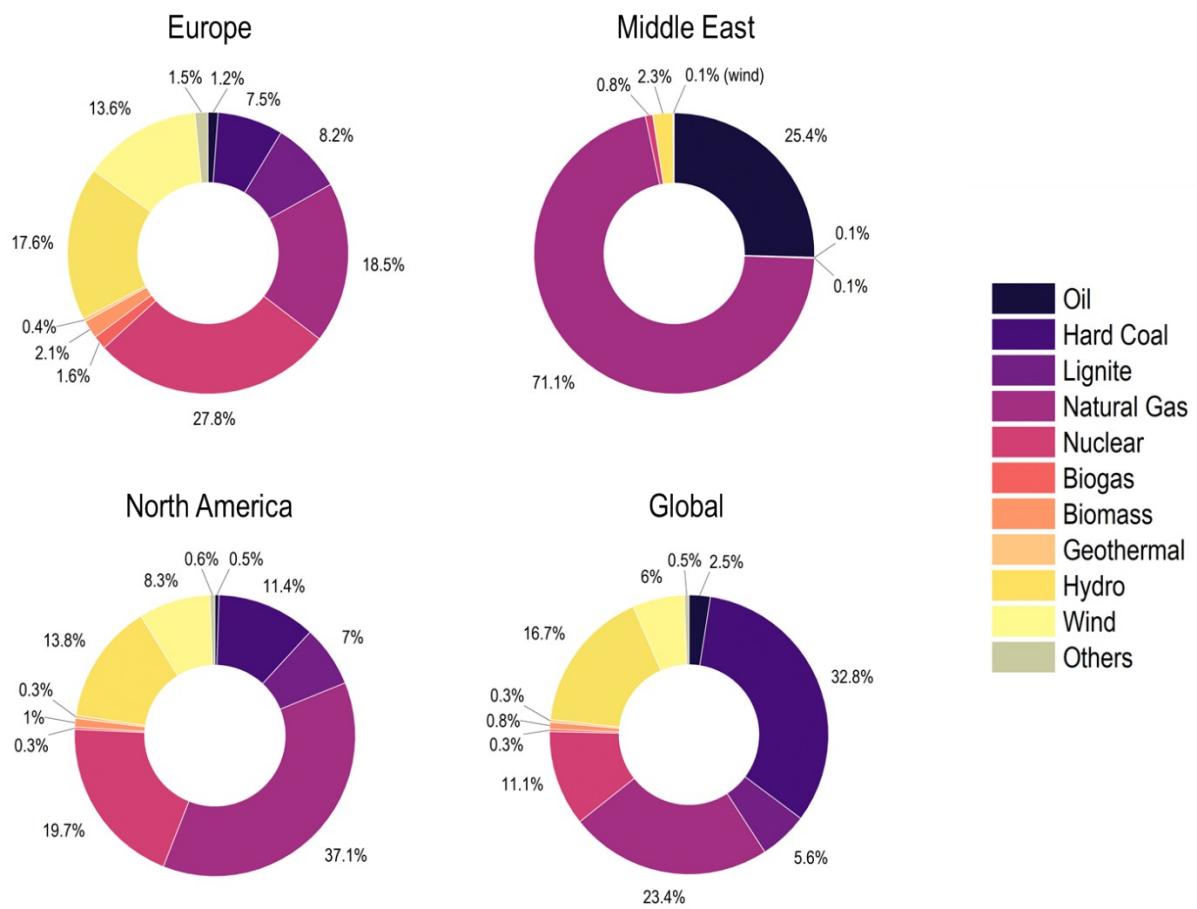

Supplementary Figure 30. Up-scaled process diagram for PEF production. Calculations are described in detail in Supplementary Table 15.

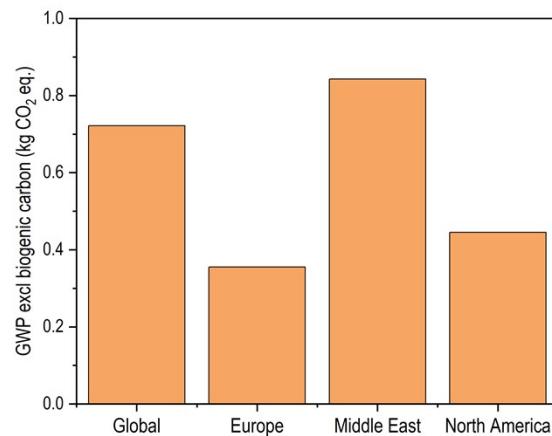

Supplementary Figure 31. Comparison of the environmental impacts of hydrodistillation and supercritical fluid extraction for thymol production. Functional unit is 1 kg of thymol produced. **a**, GWP, fossil depletion, human toxicity (non-cancer), land use, and terrestrial ecotoxicity. **b**, terrestrial acidification, stratospheric ozone depletion, photochemical ozone formation, metal depletion, marine eutrophication, marine ecotoxicity, ionizing radiation, human toxicity (cancer), freshwater eutrophication, freshwater ecotoxicity, freshwater consumption, and fine particulate matter formation.

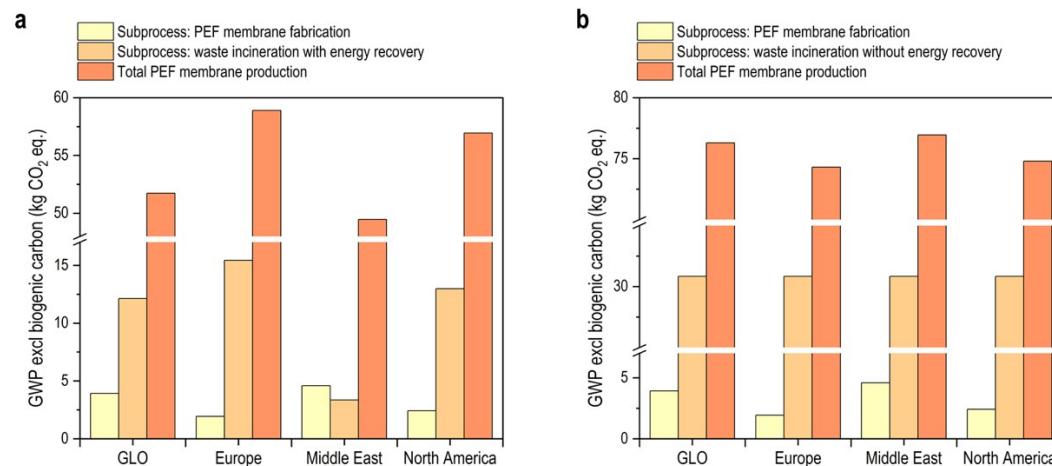

Supplementary Figure 32. Comparison of the environmental impact of PEF membrane production with hydrodistillation or supercritical fluid extraction within thymol production. Functional unit is 1 m² of PEF membrane produced. **a**, GWP, fossil depletion, human toxicity (non-cancer), land use, and terrestrial ecotoxicity. **b**, terrestrial acidification, stratospheric ozone depletion, photochemical ozone formation, metal depletion, marine eutrophication, marine ecotoxicity, ionizing radiation, human toxicity (cancer), freshwater eutrophication, freshwater ecotoxicity, freshwater consumption, and fine particulate matter formation.


Supplementary Figure 33. Comparison of the environmental impacts of PEF and different types of PET membrane production. Functional unit is 1 m² of PEF membrane produced.


Supplementary Figure 34. GWP of the different types of PET studied in this work. Functional unit is 1 kg of polymer produced.


Supplementary Figure 35. Effect of ethanol type on the environmental impacts of PEF membrane fabrication. All other parameters were kept as the baseline scenario. Functional unit is 1 m² of PEF membrane produced. **a**, GWP, fossil depletion, human toxicity, land use, and terrestrial ecotoxicity. **b**, terrestrial acidification, stratospheric ozone depletion, photochemical ozone formation, metal depletion, marine eutrophication, marine ecotoxicity, ionizing radiation, freshwater eutrophication, freshwater ecotoxicity, freshwater consumption, and fine particulate matter formation.


Supplementary Figure 36. Process contribution of 1 m² PEF membrane production with waste recycling scenario. All other parameters were kept as the baseline scenario.


Supplementary Figure 37. Environmental impact of the production of 1 m² of PEF membrane with different waste treatment scenarios. All other parameters were kept as the baseline scenario.

Supplementary Figure 38. Electricity mix in the regions analyzed in this work. Data obtained from Ecoinvent 3.9.1.

Supplementary Figure 39. Global Warming Potential (GWP) of electricity generation in different regions. Functional unit is 1 kWh of electricity produced.

Supplementary Figure 40. Effect of different electricity scenarios for PEF membrane production a, with and b, without energy recovery. The rest of parameters were kept as: supercritical fluid extraction and Bio-EtOH. Functional unit is 1 m² of PEF membrane produced.

3. Supplementary Tables

Supplementary Table 1. Hansen Solubility Parameters of PEF and selected green solvents, R_a distance, and *RED* value calculated as R_a/R_0 with $R_0 = 8.0 \text{ MPa}^{0.5}$.

Chemical	δ_D	δ_P	δ_H	R_a	<i>RED</i>
PEF*	21.7	6.8	10.2	-	
Vanillin	19.4	9.8	11.2	5.6	0.70
Thymol	19	4.5	10.8	5.9	0.74
Cyrene	18.9	12.4	7.1	8.5	1.06
Carvacrol	17.9	4	7.4	8.6	1.07
PolarClean	17.1	8.7	7.5	9.8	1.22
d-Camphor	17.8	10.3	5.2	9.9	1.24
Menthol	16.7	3.7	7.6	10.8	1.35
Methyl Lactate	16.9	8.4	15.4	11.0	1.38
Dimethyl Sulfoxide	18.4	16.4	10.2	11.6	1.46
Ethyl Lactate	16	7.6	12.5	11.7	1.46
d-Limonene	17.2	1.8	4.3	11.9	1.48
p-Cymene	17.5	2.5	2.6	12.1	1.51

Ethyl Acetate	15.8	5.3	7.2	12.3	1.53
Dimethyl Carbonate	15.5	8.6	9.7	12.5	1.57
γ -Butyrolactone (GBL)	18	16.6	7.4	12.6	1.57
n-Butyl Acetate	15.8	3.7	6.3	12.8	1.60
Propylene Carbonate	20	18	4.1	13.2	1.65
γ -Valerolactone (GVL)	16.8	16.5	6.7	14.2	1.78
(-)- α -Pinene	16.4	1	1.9	14.7	1.83
Ethylene Carbonate	18	21.7	5.1	17.4	2.18

*Calculated using the HSPiP software available at <https://www.hansen-solubility.com> with SMILES: XO=C(OCC)C1=CC=C(C([O])=O)O1X

Supplementary Table 2. Juice properties before (feed) and after (permeate) clarification with PEF membranes in dead-end configuration.

Parameter	Unit	Apple juice		Orange juice		Pomegranate juice	
		Feed	Permeate	Feed	Permeate	Feed	Permeate
Color	A ₄₂₀	0.714	0.39	0.221	0.1	0.25	0.237
Clarity	%T ₆₂₅	95	100	98	100	99.5	100
Turbidity	NTU	33.8	0.07	48.2	0.12	45.8	1.5
Soluble solids	°Brix	8.2	8.1	3.0	2.8	11.2	11.1
pH	-	3.9	3.9	3.3	3.3	2.98	2.87

Supplementary Table 3. Pomegranate juice properties before (feed) and after (permeate) clarification with PEF, PES or PSf membranes in dead-end configuration.

Parameter	Unit	PEF		PES		PSf	
		Feed	Permeate	Feed	Permeate	Feed	Permeate
Color	A ₄₂₀	0.25	0.237	0.274	0.256	0.25	0.226
Clarity	%T ₆₂₅	99.5	100	96.6	98.6	99.5	100
Turbidity	NTU	45.8	1.5	21.7	2.91	45.8	1.33
Soluble solids	°Brix	11.2	11.1	11.4	11.2	11.2	11.1
pH	-	2.98	2.87	3.33	3.21	2.98	2.96

Supplementary Table 4. Pomegranate juice properties during clarification with a PEF membrane in cross-flow configuration.

Time (min)	Recovery (wt %)	Feed/Retentate			Permeate		
		Turbidity (NTU)	pH	°Brix	Turbidity (NTU)	pH	°Brix
0	0	29.8	3.07	10.8	-	-	-
40	6.33	-	-	-	2.45	3.11	10.5
178	21.67	-	-	-	2.15	3.1	10.6
256	28.33	25.9	3.14	10.8	3.35	3.12	10.6
380	37.33	-	-	-	8.43	3.12	10.6
475	43.33	-	-	-	7.79	3.08	10.6
605	50.00	88.6	3.08	10.4	7.27	3.09	10.7

Supplementary Table 5. Pomegranate juice properties during clarification with a commercial PES membrane in cross-flow configuration.

Time (min)	Recovery (wt %)	Feed/Retentate			Permeate		
		Turbidity (NTU)	pH	°Brix	Turbidity (NTU)	pH	°Brix
0	0	39	2.04	10.8	-	-	-
54	6.33	-	-	-	2.1	2.5	10.1
258	21.67	-	-	-	0.09	2.47	10.4
386	28.33	26.1	2.22	10.7	10.3	2.48	10.8
558	36.67	-	-	-	7.27	2.52	10.8
720	43.33	-	2.47	10.8	0.31	2.62	10.2
874	53.33	46.4	2.87	9.7	19.8	2.52	10.8

Supplementary Table 6. Description of the scenarios explored in the LCA study.

Type of scenario	Nomenclature	Description
Thymol extraction technology	HD	Extraction of thyme essential oil by hydrodistillation within the thymol production process.
	SFE	Extraction of thyme essential oil with supercritical CO ₂ within the thymol production process.
Non-solvent type	F-EtOH	Fossil-based ethanol as non-solvent in the membrane coagulation bath during membrane production.
	Bio-EtOH	Bioethanol as non-solvent in the membrane coagulation bath during membrane production.
Treatment of waste solvent and polymer from membrane fabrication	INC-ER	A combined efficiency of 40% was assumed for cogeneration of heat and power, with equal shares allocated to each output. Energy production was avoided by credit scheme.
	INC-NER	Incineration without energy recovery.
	WT-REC	Recycling approach. Reuse of the polymer residue and reintroduction of 80% of the ethanol in the coagulation bath (recovered by distillation), and incineration of the remaining solvent waste with energy recovery.
Energy geographical scope for membrane fabrication	GLO	Electricity and thermal energy from global average conditions in all processes and subprocesses.
	RNA	Electricity and thermal energy from North America dataset in the membrane production stage. All upstream processes kept as GLO.
	RER	Electricity and thermal energy from Europe dataset. All upstream processes kept as GLO.
	MER	Electricity from Middle East Region and thermal energy from Asia-Pacific Region. All upstream processes were kept as GLO.

Supplementary Table 7. Description of the two types of general scenarios mentioned in this LCA study.

Name of scenario	Description
Baseline	Scenario comprising SFE, F-EtOH, INC-ER, and GLO.
Optimal	Least carbon-intensive scenario, comprising SFE, Bio-EtOH, WT-REC, and GLO.

Supplementary Table 8. Description of the subprocesses explored in the LCA study.

Subprocess	Description
Membrane production	Energy associated with the production of the polymer membrane, excluding the materials production. For PEF membranes, it includes the preparation of the solvent mixture, the dope solution, and the membrane fabrication.
Polymer production	Production of the polymer utilized for membrane fabrication including all upstream processes. In the case of PEF, all steps during the PEF synthesis.
Solvent production	Production of the solvent used for polymer solubilization: addition of the production of vanillin and thymol for PEF membranes, and production of TFA for PET membranes.
Non-solvent production	Production of the non-solvent used in the coagulation bath: ethanol or bioethanol depending on the scenario.
Waste treatment	Treatment of waste solvent and polymer from membrane fabrication. In the recycling scenario, it was divided in two subprocesses: waste incineration with energy recovery and solvent distillation.

Supplementary Table 9. Life Cycle Inventory of the production of 1 m² PEF membrane.

Primary data at the laboratory scale.

Flow type	Name	Unit	Amount	Dataset/Source
Inputs	PEF	kg	0.03568	Built-in LCI (Supplementary Table 19)
	Thymol-vanillin DES	kg	0.16272	Built-in LCI (Supplementary Table 14)
	Ethanol	kg	19.84042	RoW: market for ethanol, without water (Ecoinvent 3.9.1.)
	Electricity (stirring, heating, fumehood)	kWh	5.31195	GLO: market group for electricity, medium voltage (Ecoinvent 3.9.1.)
Outputs	PEF membrane	m ²	1 (0.0339 kg)	Defined within the model
	PEF waste	kg	0.00178	Plastic (ground, unspecific) (Sphera)
	Solvent waste (ethanol, thymol, and vanillin)	kg	16.00314	Solvent [Hazardous waste for recovery] (Sphera)
	Ethanol vapor	kg	4	Ethanol [Group NMVOC to air] (Sphera)

*Assumptions: 5 wt% membrane material stays in the casting knife denoted as PEF waste. 100 wt% of the thymol-vanillin solutions dissolve in ethanol with no reaction happening. 20% of ethanol vaporizes during the complete process. Materials quantities were based on experimental laboratory data. Electricity data was recorded with an energy meter connected to the heating plate and stirring plates. The fume hood energy consumption was calculated based on the manufacturer specifications (electrical power of 1.15 kW).

Supplementary Table 10. Life Cycle Inventory of the production of 1 kg of thymol-vanillin mixture. Primary data at the laboratory scale.

Flow type	Name	Unit	Amount	Dataset/Source
Inputs	Thymol	kg	0.79825	Built-in LCI (Table S27)
	Vanillin	kg	0.20175	Built-in LCI (Table S25)
	Electricity (heating and stirring)	kWh	0.02697	GLO: market group for electricity, medium voltage (Ecoinvent 3.9.1.)
Outputs	Thymol-vanillin mixture	kg	1.00000	Defined within the model

Supplementary Table 11. Life Cycle Inventory of the production of 1 m² PET membrane.

Adapted from Pulido et al.⁵ with conditions for membrane M8 (10 wt% PET, 4 wt% PEG, coagulated in ethanol).

Flow type	Name	Unit	Amount	Dataset/Source
Inputs	PET	kg	0.03568	GLO: market for polyethylene terephthalate, granulate, bottle grade (Ecoinvent 3.9.1)
				US: Polyethylene terephthalate bottle grade granulate (PET) via PTA (partially biobased from sugar cane) (Sphera)
				RoW: market for polyethylene terephthalate, granulate, bottle grade, recycled (Ecoinvent 3.9.1)
	Trifluoroacetic acid (TFA)	kg	0.30688	RoW: market for trifluoroacetic acid (Ecoinvent 3.9.1.)
	Polyethylene glycol (PEG) (1 kg mol-1)	kg	0.01427	RoW: market for triethylene glycol (Ecoinvent 3.9.1.) (used as proxy)
	Ethanol	L	35.68421	RoW: market for ethanol, without water (Ecoinvent 3.9.1.)
				RoW: market for ethanol, without

				water, from fermentation, vehicle grade (Ecoinvent 3.9.1.)
	Electricity (fumehood, stirring)	kWh	4.623	GLO: market group for electricity, medium voltage (Ecoinvent 3.9.1.)
Outputs	PET membrane	m ²	1 (0.0339 kg)	Defined within the model
	PET waste	kg	0.00178	Plastic (ground, unspecific) (Sphera)
	Waste solvent (ethanol, TFA, and PEG)	kg	36.00394	Solvent [Hazardous waste for recovery] (Sphera)
	Ethanol vapor	kg	7.137	Ethanol [Group NMVOC to air] (Sphera)

*Assumptions: same as for PEF membrane.

Supplementary Table 12. Life Cycle Inventory of the distillation of ethanol from the solvent waste generated during PEF membrane fabrication. Data obtained by calculations following the upscaling framework proposed by Piccinno et al.³

Flow type	Name	Unit	Amount	Dataset/Source
Inputs	Solvent waste (ethanol, thymol, and vanillin)	kg	1.25000	Solvent [Hazardous waste for recovery] (Sphera)
	Cooling water	kg	0.03375	GLO: market group for tap water (Ecoinvent 3.9.1.)
	Thermal energy (distillation)	kWh	0.46930	ROW: Thermal energy from natural gas (Sphera)
	Electricity (pumping)	KJ	0.12330	GLO: market group for electricity, medium voltage (Ecoinvent 3.9.1.)
Outputs	Ethanol	kg	1.00000	RoW: market for ethanol, without water (Ecoinvent 3.9.1.)
	Solvent waste	kg	0.25000	Solvent [Hazardous waste for recovery] (Sphera)
	Water	kg	0.03375	Water (cooling water) [Operating materials]

*Assumptions: No reflux was considered for the energy calculations given the large difference between the mixture components' vapor pressure.

The thermal energy required for distillation was calculated according to eq. S1:

$$Q_{dist} = \frac{Q_{heat} + Q_{vap}}{\eta_{heat} - 0.1} = \frac{C_p(m_{mix})(T_d - T_0) + \Delta H_{vap}(m_{dist})}{\eta_{heat} - 0.1} \quad \text{Eq. S1}$$

where C_p is the specific heat of the mixture (2.51KJ/kg K); m_{mix} is the mass of the mixture, T_d is the distillation temperature (78.4°C); T_0 is the initial temperature (20 °C), ΔH_{vap} is the volatile solvent heat of vaporization (837.023 KJ/kg); m_{dist} is the mass of the distillate (80% of ethanol in the mixture), and η_{heat} is the efficiency of the heating element (0.7 assumed).

Supplementary Table 13. Life Cycle Inventory of incineration of the remaining solvent after distillation.

Flow type	Name	Unit	Amount	Dataset/Source
Inputs	Solvent for incineration	kg	1.0000	Defined within the model
	Electricity	MJ	5.4	GLO: market group for electricity, medium voltage (Ecoinvent 3.9.1.) (Credit)
Outputs	Steam	MJ	5.4	ROW: process steam from natural gas (Ecoinvent 3.9.1.) (credit)
	Carbon dioxide	kg	1.925	Carbon dioxide [Inorganic emissions to air (group VOC)] (Sphera)
	Methane	kg	3.01E-005	Methane [Organic emissions to air] (Sphera)
	Nitrous oxide	kg	3.35E-006	Nitrous oxide (laughing gas) [Inorganic emissions to air] (Sphera)

*Assumptions: LHV of 27 MJ kg⁻¹ (ethanol). 40% conversion efficiency during energy recovery. 50% of generated energy as electricity and 50% as thermal energy. Impact mitigation by credit scheme.

Supplementary Table 14. Life Cycle Inventory of incineration of PEF residue.

Flow type	Name	Unit	Amount	Dataset/Source
Inputs	PEF waste	kg	1.0000	Defined within the model
	Electricity	MJ	2.516	GLO: market group for electricity, medium voltage (Ecoinvent 3.9.1.) (Credit)
	Steam	MJ	4.505	ROW: process steam from natural gas (Ecoinvent 3.9.1.) (credit)
Outputs	Carbon dioxide	kg	1.582	Carbon dioxide [Inorganic emissions to air (group VOC)] (Sphera)
	Methane	kg	0.0002	Methane [Organic emissions to air] (Sphera)
	Nitrous oxide	kg	0.0001	Nitrous oxide (laughing gas) [Inorganic emissions to air] (Sphera)

*Assumptions: LHV of 17 MJ kg⁻¹ (PEF)⁶. 40% conversion efficiency during energy recovery. 36% of generated energy as electricity and 64% as thermal energy. Impact mitigation by credit scheme.

Supplementary Table 15. Life Cycle Inventory of the synthesis of 1 kg of PEF. Primary lab-scale data adapted to the production of 8056.3285 kg of PEF following the upscaling framework proposed by Piccinno et al.³

Flow type	Name	Unit	Amount	Dataset/Source
Inputs	2,5-Furandicarboxylic acid (FDCA)	kg	0.90186	Built-in LCI (Table S21)
	Ethylene glycol (EG)	kg	0.75311	RER: ethylene glycol (from ethane and oxygen via EO, Sphera)
	Antimony trioxide (Sb ₂ O ₃)	kg	0.00066	GLO: market group for antimony (Ecoinvent 3.9.1.)
	Methanol	kg	1.00000	GLO: market for methanol (Ecoinvent 3.9.1.)
	Electricity	kWh	0.03039	GLO: market group for electricity, medium voltage (Ecoinvent 3.9.1.)
	Thermal energy	kWh	0.25935	ROW: Thermal energy from natural gas (Sphera)
Outputs	PEF	kg	1.00000	Defined within the model
	Water vapor	kg	0.19777	Water (evapotranspiration) [Inorganic emissions to air] (Sphera)
	Solvent waste (methanol and unreacted substances)	kg	1.45787	Solvent [Hazardous waste for recovery] (Sphera)

*Assumptions: The reaction yield was 95%. The process consisted of five steps: esterification, polycondensation, polymer milling, rinsing and filtering, and drying. The catalyst integrated with the polymer. The upscaling framework considered the production of 8056.3285 kg of PEF in a reactor with a volume of 11 m³. The resulting process flows from the upscaling calculations are shown in Fig. S27.

Calculations for each unit process were as follows:

1. **Esterification.** Heating energy (temperature increase and compensation of heat losses) and stirring energy.

$$Q_{react} = \frac{Q_{heat} + Q_{loss}}{\eta_{heat}} = \frac{[(C_{p(FDCA)} * m_{FDCA} + (C_{p(EG)} * m_{EG})(T_r - T_0) + A\left(\frac{k_a}{s}\right)(T_{r2} - T_{out})t]}{\eta_{heat}}$$

Due to lack of data on FDCA, the specific heat of terephthalic acid was used in the energy calculations. ($C_{pTA} = 1201.46 \text{ J/kg}\cdot\text{K}$) (specific heat of terephthalic acid); $C_{pEG} = 1778.7 \text{ J/kg}\cdot\text{K}$ (specific heat of ethylene glycol); $T_r = 533.15 \text{ K}$ (reaction temperature); $T_0 = 293.15 \text{ K}$ (initial temperature); $m_{mix} = 1.42 \text{ kg}$ (mass of mixture); $A = 0.0476 \text{ m}^2$ (surface area of the reactor); $k_a = 0.042 \text{ W/m}\cdot\text{K}$ (thermal conductivity of insulation material); $s = 1 \text{ cm}$ (thickness of insulator); $T_{out} = 293.15 \text{ K}$ (temperature outside reactor); $(T_{r2} - T_{out}) * t$ was calculated for the different reaction steps described in the Materials and Methods section; $\eta_{heat} = 0.7$ (efficiency of heating element).

$$E_{stirring}[J] = \frac{N_p \cdot \rho_{mix} \cdot N^3 d^5 \cdot t}{\eta_{stir}}$$

$N_p = 0.79$ (dimensionless number related to power number of an impeller stirrer); $\rho_{mix} = 1.3325 \text{ g/cm}^3$ (density of the reaction mixture); $N = 0.658 \text{ s}^{-1}$ (rotational speed of agitator); $d = 0.803 \text{ m}$ (impeller diameter); $t = 2.5 \text{ h}$ (reaction time); and $\eta_{stir} = 90\%$ (efficiency of agitator).

2. **Polycondensation.** Heating energy (temperature increase and compensation of heat losses) and stirring energy. Calculated similarly to esterification.

3. Milling. Used energy for grinding as an approximation.

$$E_{milling} = 16 \text{ kWh (ton of material)}$$

4. **Rinsing with methanol.** Pumping energy calculated assuming 1 kg of methanol per kg of polymer.

$$E_{pumping} = 55 \text{ J (kg of material)}$$

5. **Filtration.**

$$E_{filtration} = 10 \text{ kWh (ton of material)}$$

6. Drying. Assumed 10 wt% of the weight of the wet polymer is methanol.

$$Q_{dry} = \frac{(C_{p(liq)}) * m_{liq} * (T_{boil} - T_0) + \Delta H_{vap}(m_{vap})}{\eta_{dry}}$$

where C_p (specific heat of the solvent in liquid state); $m_{liq} = 938.15$ kg (mass of methanol in the wet polymer), $T_{boil} = 64.7$ °C (boiling point of methanol); $T_0 = 20$ °C (room temperature), $\Delta H_{vap} = 1165$ KJ/kg (heat of vaporization of methanol); $m_{vap} = 938.115$ kg (mass of methanol), and $\eta_{dry} = 0.8$ (drier efficiency).

Supplementary Table 16. Life Cycle Inventory of the distillation of ethanol from the solvent waste generated during PEF synthesis. Data obtained by calculations following the upscaling framework proposed by Piccinno et al.³

Flow type	Name	Unit	Amount	Dataset/Source
Inputs	Methanol waste (MeOH, EG, FDCA)	kg	1.82234	Solvent [Hazardous waste for recovery] (Sphera)
	Cooling water	kg	0.04920	GLO: market group for tap water (Ecoinvent 3.9.1)
	Thermal energy (distillation)	MJ	0.33941	ROW: Thermal energy from natural gas (Sphera)
	Electricity (pumping)	KJ	0.15523	GLO: market group for electricity, medium voltage (Ecoinvent 3.9.1.)
Outputs	Methanol (99%)	kg	1.00000	Defined within the model
				Solvent [Hazardous waste for recovery]
	Solvent waste	kg	0.36447	(Sphera)
				Water (tap water) [Operating materials]
	Water	kg	0.04920	(Sphera)

*Assumptions: No reflux was considered for the energy calculations given the large difference between the mixture components' vapor pressure.

The thermal energy required for distillation was calculated similarly to ethanol considering the solvent volume obtained from the upscaled PEF synthesis. The following values were used: $C_p = 79.5 \text{ J/mol K}$, $m_{mix} = 11745.08$, $T_d = 65^\circ\text{C}$, $T_0 = 20^\circ\text{C}$, $\Delta H_{vap} = 37.34 \text{ KJ/mol}$, $m_{dist} = 6445.0628 \text{ kg}$ (80% of methanol in the mixture), and $\eta_{heat} = 0.7$.

Supplementary Table 17. Life Cycle Inventory of the synthesis of 1 kg of 2,5-furan dicarboxylic acid (FDCA) from hydroxymethyl furfural. Adapted from Bello et al.⁷

Flow type	Name	Unit	Amount	Dataset/Source
Inputs	Hydroxymethyl furfural	kg	0.8200	Built-in LCI (Table S22)
	Acetic acid	kg	3.6700	RoW: market for acetic acid (Ecoinvent 3.9.1.)
	Water	kg	5.5000	RoW: market for tap water (Ecoinvent 3.9.1.)
	PtZrO ₂ catalyst	kg	0	Reuse of the catalyst was considered
	Electricity	kWh	15.8470	GLO: market group for electricity, medium voltage (Ecoinvent 3.9.1.)
	Thermal energy	kWh	14.0800	ROW: Thermal energy from natural gas (Sphera)
	Cooling energy	kWh	17.0600	GLO: market for cooling energy (Ecoinvent 3.9.1.)
Outputs	FDCA	kg	1.0000	Defined within the model
	Water vapour	kg	0.3200	Water (evapotranspiration) [Inorganic emissions to air] (Sphera)
	Acetic acid to air	kg	0.2300	Acetic acid (Group NMVOC to air) (Sphera)
	Nitrogen	kg	16.6200	Nitrogen, total [Inorganic emissions to air] (Sphera)
	Oxygen	kg	4.6400	Oxygen [Inorganic emissions to air] (Sphera)
	Wastewater	m ³	0.0088	Wastewater [Production residues in life cycle] (Sphera)

Supplementary Table 18. Life Cycle Inventory of the synthesis of 1 kg of hydroxymethyl furfural from wood biomass. Adapted from Bello et al.⁷. Economic allocation was applied to this production system.

Flow type	Name	Unit	Amount	Dataset/Source
Inputs				
	Biomass feedstock	kg	0.04647	RoW: hardwood forestry, birch, sustainable forest management (Ecoinvent 3.9.1.)
	Water	m ³	29.77920	GLO: market group for tap water (Ecoinvent 3.9.1.)
	Sulfuric acid	kg	0.00319	RoW: market for sulfuric acid (Ecoinvent 3.9.1.)
	Dimethyl sulfoxide	kg	0.00881	GLO: market for dimethyl sulfoxide (Ecoinvent 3.9.1.)
	Dichloromethane	kg	0.10311	RoW: market for dichloromethane (Ecoinvent 3.9.1.)
	Natural gas	kg	0.00957	RoW: market for natural gas, high pressure (Ecoinvent 3.9.1.)
	Electricity	kWh	0.03538	GLO: market group for electricity, medium voltage (Ecoinvent 3.9.1.)
	Thermal energy	kWh	0.05942	ROW: Thermal energy from natural gas (Sphera)
Outputs	Hydroxymethyl furfural	kg	1.00000	Defined within the model
	Wastewater	m ³	0.33599	Wastewater [Production residues in life cycle] (Sphera)
	CO ₂ fossil	kg	0.00805	Carbon dioxide [Inorganic emissions to air] (Sphera)
	CO ₂ biogenic	kg	0.02627	Carbon dioxide (biotic) [Inorganic emissions to air] (Sphera)

Supplementary Table 19. Life Cycle Inventory of the production of 1 kg of vanillin from kraft lignin. Adapted from Sánchez et al.⁸ (scenario with CO₂). Mass allocation was applied to this production system considering vanillin, phenolic compounds, and acetic acid as valuable products produced.

Flow type	Name	Unit	Amount	Dataset/Source
Inputs	Lignin feed for vanillin production	kg	22.70000	Built-in LCI (Table S25)
	PODIC 0.2 M	kg	3813.79000	Built-in LCI (Table S24)
	Ethanol	kg	0.02613	RoW: market for ethanol, without water (Ecoinvent 3.9.1.)
	Acetic acid	kg	0.69322	GLO: market for acetic acid, without water, in 98% solution state (Ecoinvent 3.9.1.)
	Carbon dioxide	kg	3.58000	RoW market for carbon dioxide, liquid (Ecoinvent 3.9.1.)
	Electricity	kWh	1.96734	GLO: market group for electricity, medium voltage (Ecoinvent 3.9.1.)
	Thermal energy	kWh	198.07000	ROW: Thermal energy from natural gas (Sphera)
	Cooling energy	kWh	51.73000	GLO: market for cooling energy (Ecoinvent 3.9.1.)
Outputs	Vanillin	kg	1.00000	Defined within the model
	Phenolic compounds	kg	330.40000	Defined within the model
	Acetic acid	kg	0.96000	Acetic acid [Organic intermediate product] (Sphera)
	Water vapour	kg	1.70034	Water (evapotranspiration) [Inorganic emissions to air] (Sphera)
	Hydrogen	kg	0.73536	Hydrogen [Inorganic emissions to air] (Sphera)
	Carbon dioxide	kg	5.69152	Carbon dioxide [Inorganic emissions to air] (Sphera)
	Oxygen	kg	6.19746	Oxygen [Inorganic emissions to air] (Sphera)
	Alcohols	kg	0.00169	Alcohols (unspec.) [Group NMVOC to

			air] (Sphera)
Wastewater	m ³	174.70573	Wastewater [Production residues in life cycle] (Sphera)

Supplementary Table 20. Life Cycle Inventory of the production of 1 kg of PODIC 0.2 M for vanillin production. Adapted from Sánchez et al.⁸ (scenario with CO₂).

Flow type	Name	Unit	Amount	Dataset/Source
Inputs	Soda ash	kg	0.01575	GLO: market for soda ash, dense (Ecoinvent 3.9.1.)
	Tap water	kg	0.11388	GLO: market group for tap water (Ecoinvent 3.9.1)
	Electricity (reactor and pumping)	kWh	0.07744	GLO: market group for electricity, medium voltage (Ecoinvent 3.9.1.)
	Cooling energy	kWh	0.09872	GLO: market for cooling energy (Ecoinvent 3.9.1.)
Outputs	PODIC 0.2 M	kg	1.00000	Defined within the model

Supplementary Table 21. Life Cycle Inventory of the production of 1 kg of lignin feed for vanillin production. Adapted from Sánchez et al.⁸ (scenario with CO₂).

Flow type	Name	Unit	Amount	Dataset/Source
Inputs	Kraft Lignin	kg	1.00000	Built-in LCI (Table S26)
	Carbon dioxide liquid	kg	0.30000	RoW: market for carbon dioxide, liquid (Ecoinvent 3.9.1.)
	Sulfuric acid	kg	0.23000	RoW: market for sulfuric acid (Ecoinvent 3.9.1.)
	Sodium hydroxide (50% NaOH)	kg	0.10700	GLO: market for sodium hydroxide, without water, in 50% solution state (Ecoinvent 3.9.1.)
	Limestone, crushed	kg	0.23000	RoW: market for limestone, crushed, for mill (Ecoinvent 3.9.1.)
	Tap water	kg	4.85000	GLO: market group for tap water (Ecoinvent 3.9.1)
	Thermal energy	MJ	31.50000	ROW: Thermal energy from natural gas (Sphera)
	Electricity	kWh	0.01000	GLO: market group for electricity, medium voltage (Ecoinvent 3.9.1.)
Outputs	Lignin feed for vanillin production	kg	1.00000	Defined within the model
	Sulfur to air	kg	0.00105	Sulfur to air
	Nitrogen oxides to air	kg	0.00200	Nitrous oxide (laughing gas) [Inorganic emissions to air] (Sphera)
	Sodium sulfate to air	kg	0.00080	Sodium sulfate
	Sodium carbonate to air	kg	0.00080	Sodium carbonate

Supplementary Table 22. Life Cycle Inventory of the production of 1 kg of kraft lignin. Adapted from Moretti et al.⁹ (conditions for Avantium).

Flow type	Name	Unit	Amount	Dataset/Source
Inputs	Wood chips	kg	3.00000	RoW: hardwood forestry, birch, sustainable forest management (Ecoinvent 3.9.1.)
	Hydrochloric acid	kg	0.30000	RoW: market for hydrochloric acid, without waster, in 30% solution state (Ecoinvent 3.9.1.)
	Process water	kg	24.60000	GLO: market group for tap water (Ecoinvent 3.9.1)
	Sodium hydroxide	kg	0.10000	RER: Sodium hydroxide (caustic soda) mix 100% (Sphera)
	Active carbon	kg	0.00050	GLO: market for activated carbon, granular (Ecoinvent 3.9.1)
	Electricity	kWh	0.90000	GLO: market group for electricity, medium voltage (Ecoinvent 3.9.1.)
	Natural gas for heat/steam	MJ	52.26700	ROW: Thermal energy from natural gas (Sphera)
Outputs	Cooling energy	MJ	0.02160	GLO: market group for cooling energy (Ecoinvent 3.9.1.)
	Kraft lignin	kg	1.00000	Defined within the model
	Wastewater	m ³	0.01500	Wastewater [Production residues in life cycle] (Sphera)

Supplementary Table 23. Life Cycle Inventory of the production of 1 kg of thymol by crystallization from thyme essential oil. Adapted from US Patent 2020/0385326A1.¹⁰

Flow type	Name	Unit	Amount	Dataset/Source
Inputs	Thyme essential oil	kg	2.38182	Built-in LCI (Table S28 and 29)
	Hexane	kg	1.71688	GLO: market for hexane (Ecoinvent 3.9.1.)
	Cooling energy	KJ	185.99740	GLO: market for cooling energy (Ecoinvent 3.9.1.)
Outputs	Thymol	kg	1.00000	Defined within the model
	Liquid waste	kg	3.09870	Liquid hazardous waste [Hazardous waste] (Sphera)

Supplementary Table 24. Life Cycle Inventory of the extraction of thyme essential oil by hydrodistillation. Adapted from Limam et al.¹¹ (eucalyptus essential oil extraction as proxy).

Flow type	Name	Unit	Amount	Dataset/Source
Inputs	Thyme leaves (fresh)	kg	134.70437	Built-in LCI (Table S30)
				GLO: market group for tap water (Ecoinvent 3.9.1)
	Water	kg	12.11440	
	Thermal energy	MJ	2.37156	ROW: Thermal energy from natural gas (Sphera)
Outputs				GLO: market group for electricity, medium voltage (Ecoinvent 3.9.1.)
	Electricity	MJ	37.72494	
	Thyme essential oil	kg	1.00000	Defined within the model
				Water (evapotranspiration)
	Water vapor	kg	74.06812	[Inorganic emissions to air]
	Biomass waste	kg	30.32940	Biowaste [Waste for recovery]
	Hydrosol	kg	41.42124	Defined within the model

*Assumptions: Yield of 1.65 wt% from dry leaves based on Gavrila, et al.¹² Mass allocation was applied considering thymol and hydrosol as the valuable products from the whole thymol production process (hydrodistillation + crystallization).

Supplementary Table 25. Life Cycle Inventory of the extraction of thyme essential oil by supercritical fluid extraction. Adapted from Limam et al.¹¹ (eucalyptus essential oil extraction as proxy).

Flow type	Name	Unit	Amount	Dataset/Source
Inputs	Thyme leaves (fresh)	kg	67.15691	Built-in LCI (Table S30)
	CO ₂	kg	0.29533	RoW: market for carbon dioxide, liquid (Ecoinvent 3.9.1.)
	Thermal energy	MJ	3.24858	ROW: Thermal energy from natural gas (Sphera)
Outputs	Electricity	MJ	4.23496	GLO: market group for electricity, medium voltage (Ecoinvent 3.9.1.)
	Thyme essential oil	kg	1.00000	Defined within the model
Outputs	CO ₂ emissions	kg	0.29533	Carbon dioxide [Inorganic emissions to air]
	Water vapor	kg	43.53091	Water (evapotranspiration)
	Biomass waste	kg	22.62600	[Inorganic emissions to air]
				Biowaste [Waste for recovery]

*Assumptions: Yield of 3.31 wt% from dry leaves based on Bermejo, et al.¹³.

Supplementary Table 26. Life Cycle Inventory of the cultivation of thyme. Adapted from De Falco et al.¹⁴

Flow type	Name	Unit	Amount	Dataset/Source
Inputs				
	Diesel oil	kg	0.03188	RER: Diesel mix at filling station (100% fossil) (Sphera)
	Lubricants	kg	0.00065	RoW: lubricating oil production (Ecoinvent 3.9.1.)
	Phosphorous pentoxide	kg	0.00976	US: Phosphorous fertilizer, production mix, at plant (Sphera)
	Nitrogen	kg	0.00781	US: Nitrogen fertilizer, production mix, at plant (Sphera)
	Irrigation water	m ³	0.05921	GLO: market group for tap water (Ecoinvent 3.9.1)
	Land use	m ² yr	1.58730	Agriculture [Occupation]
	Seedlings	pcs	16	GLO: market for eucalyptus seedling, for planting (Ecoinvent 3.9.1) (proxy)
Outputs	Fresh thyme	kg	1.00000	Defined within the model

*Assumptions: yield of 6.3 ton of fresh thyme ha⁻¹ yr⁻¹. 10 seedlings planted per m².

Supplementary Table 27. Environmental impacts of thymol extraction with hydrodistillation or supercritical fluid extraction technologies. The functional unit is 1 kg of thymol produced.

Environmental impact category	Thymol production	
	Hydrodistillation	Supercritical fluid extraction
GWP, excl biogenic carbon [kg CO ₂ eq.]	45.27	17.36
GWP, incl biogenic carbon [kg CO ₂ eq.]	-70.99	-39.91
Fine Particulate Matter Formation [kg PM2.5 eq.]	0.09	0.03
Fossil depletion [kg oil eq.]	26.90	11.99
Freshwater consumption [m ³]	0.25	0.07
Freshwater ecotoxicity [kg 1,4 DB eq.]	0.15	0.06
Freshwater eutrophication [kg P eq.]	0.08	0.04
Human toxicity, cancer [kg 1,4-DB eq.]	3.25	1.43
Human toxicity, non-cancer [kg 1,4-DB eq.]	21.81	9.12
Ionizing Radiation [kBq Co-60 eq. to air]	2.41	0.41
Land use [Annual crop eq.y]	510.06	254.22
Marine ecotoxicity [kg 1,4-DB eq.]	0.29	0.12
Marine eutrophication [kg N eq.]	0.00	0.00
Metal depletion [kg Cu eq.]	0.06	0.03
Photochemical Ozone Formation, Ecosystems [kg NOx eq.]	0.13	0.05
Photochemical Ozone Formation, Human Health [kg NOx eq.]	0.13	0.05
Stratospheric Ozone Depletion [kg CFC-11 eq.]	0.00	0.00
Terrestrial Acidification [kg SO ₂ eq.]	0.22	0.09
Terrestrial ecotoxicity [kg 1,4-DB eq.]	189.16	95.87

Supplementary Table 28. Environmental impacts of the production of 1 m² of PEF membrane with hydrodistillation or supercritical fluid extraction as technologies for thymol extraction. The remaining parameters were kept as the baseline.

Environmental impact category	PEF membrane fabrication	
	Hydrodistillation for thymol extraction	Supercritical fluid extraction for thymol extraction
GWP, excl biogenic carbon [kg CO ₂ eq.]	55.35	51.73
GWP, incl biogenic carbon [kg CO ₂ eq.]	40.26	44.30
Fine Particulate Matter Formation [kg PM2.5 eq.]	0.03	0.02
Fossil depletion [kg oil eq.]	21.53	19.60
Freshwater Consumption [m ³]	-0.04	-0.06
Freshwater ecotoxicity [kg 1,4 DB eq.]	0.11	0.10
Freshwater Eutrophication [kg P eq.]	0.02	0.02
Human toxicity, cancer [kg 1,4-DB eq.]	2.76	2.52
Human toxicity, non-cancer [kg 1,4-DB eq.]	13.21	11.56
Ionizing Radiation [kBq Co-60 eq. to air]	-0.88	-1.14
Land use [Annual crop eq.:y]	66.61	33.38
Marine ecotoxicity [kg 1,4-DB eq.]	0.20	0.18
Marine eutrophication [kg N eq.]	0.00	0.00
Metal depletion [kg Cu eq.]	0.10	0.10
Photochemical Ozone Formation, Ecosystems [kg NO _x eq.]	0.89	0.88
Photochemical Ozone Formation, Human Health [kg NO _x eq.]	0.58	0.57
Stratospheric Ozone Depletion [kg CFC-11 eq.]	0.00	0.00
Terrestrial Acidification [kg SO ₂ eq.]	0.12	0.11
Terrestrial ecotoxicity [kg 1,4-DB eq.]	102.46	90.34

Supplementary Table 29. Environmental impacts of the production of 1 m² of PEF membrane under the baseline scenario (hydrodistillation, fossil-based ethanol, incineration with energy recovery, and global raw materials production and energy mix).

Environmental impact category	PEF membrane fabrication	Polymer production	Solvent production	Non- solvent production	Waste incineration with energy recovery	Total
GWP, excl biogenic carbon [kg CO ₂ eq.]	3.92	0.95	2.31	38.27	6.27	51.73
GWP, incl biogenic carbon [kg CO ₂ eq.]	3.94	0.95	-5.16	38.35	6.22	44.30
Fine Particulate Matter Formation [kg PM2.5 eq.]	0.01	0.00	0.00	0.05	-0.04	0.02
Fossil depletion [kg oil eq.]	1.40	0.40	1.56	24.96	-8.72	19.60
Freshwater Consumption [m ³]	0.03	0.01	0.01	0.01	-0.12	-0.06
Freshwater ecotoxicity [kg 1,4 DB eq.]	0.01	0.00	0.01	0.13	-0.05	0.10
Freshwater Eutrophication [kg P eq.]	0.00	0.00	0.00	0.02	-0.01	0.02
Human toxicity, cancer [kg 1,4-DB eq.]	0.20	0.05	0.19	2.87	-0.79	2.52
Human toxicity, non-cancer [kg 1,4-DB eq.]	1.24	0.31	1.19	14.30	-5.48	11.56
Ionizing Radiation [kBq Co-60 eq. to air]	0.47	0.07	0.05	0.34	-2.07	-1.14
Land use [Annual crop eq.y]	0.05	0.01	33.03	0.52	-0.23	33.38
Marine ecotoxicity [kg 1,4-DB eq.]	0.02	0.00	0.02	0.21	-0.07	0.18
Marine eutrophication [kg N eq.]	0.00	0.00	0.00	0.00	0.00	0.00
Metal depletion [kg Cu eq.]	0.00	0.00	0.00	0.11	-0.01	0.10
Photochemical Ozone Formation, Ecosystems [kg NOx eq.]	0.80	0.00	0.01	0.11	-0.05	0.88
Photochemical Ozone Formation, Human Health [kg NOx eq.]	0.50	0.00	0.01	0.10	-0.05	0.57
Stratospheric Ozone Depletion [kg CFC-11 eq.]	0.00	0.00	0.00	0.00	0.00	0.00
Terrestrial Acidification [kg SO ₂ eq.]	0.01	0.00	0.01	0.14	-0.06	0.11
Terrestrial ecotoxicity [kg 1,4-DB eq.]	3.91	2.58	12.48	87.33	-15.98	90.34

Supplementary Table 30. Environmental impacts of the production of 1 m² of fossil PET membrane. Parameters were fossil-based ethanol, incineration with energy recovery, and global raw materials production and energy mix.

Environmental impact category	Fossil PET membrane fabrication	Polymer production	Solvent production	Non- solvent production	Waste incineration with energy recovery	Total
GWP, excl biogenic carbon [kg CO ₂ eq.]	3.37	0.11	2.74	68.84	14.11	89.18
GWP, incl biogenic carbon [kg CO ₂ eq.]	3.38	0.11	2.75	68.98	13.99	89.21
Fine Particulate Matter Formation [kg PM2.5 eq.]	0.01	0.00	0.01	0.08	-0.08	0.02
Fossil depletion [kg oil eq.]	1.21	0.06	1.00	44.89	-19.62	27.54
Freshwater Consumption [m ³]	0.02	0.00	0.06	0.02	-0.26	-0.16
Freshwater ecotoxicity [kg 1,4 DB eq.]	0.01	0.00	0.01	0.23	-0.12	0.14
Freshwater Eutrophication [kg P eq.]	0.00	0.00	0.00	0.04	-0.02	0.02
Human toxicity, cancer [kg 1,4-DB eq.]	0.19	0.01	0.34	5.16	-1.77	3.95
Human toxicity, non-cancer [kg 1,4-DB eq.]	1.06	0.05	2.15	25.72	-12.34	16.65
Ionizing Radiation [kBq Co-60 eq. to air]	0.40	0.00	0.22	0.61	-4.65	-3.42
Land use [Annual crop eq.y]	0.05	0.00	0.06	0.94	-0.53	0.52
Marine ecotoxicity [kg 1,4-DB eq.]	0.02	0.00	0.03	0.38	-0.16	0.27
Marine eutrophication [kg N eq.]	0.00	0.00	0.00	0.00	0.00	0.00
Metal depletion [kg Cu eq.]	0.00	0.00	0.02	0.19	-0.03	0.18
Photochemical Ozone Formation, Ecosystems [kg NOx eq.]	1.43	0.00	0.01	0.20	-0.11	1.53
Photochemical Ozone Formation, Human Health [kg NOx eq.]	0.89	0.00	0.01	0.19	-0.11	0.97
Stratospheric Ozone Depletion [kg CFC-11 eq.]	0.00	0.00	0.00	0.00	0.00	0.00
Terrestrial Acidification [kg SO ₂ eq.]	0.01	0.00	0.01	0.25	-0.13	0.14
Terrestrial ecotoxicity [kg 1,4-DB eq.]	3.71	0.53	23.04	157.08	-35.95	148.41

Supplementary Table 31. Environmental impacts of the production of 1 m² of PET membrane from different PET types. Parameters were fossil-based ethanol, incineration with energy recovery, and global raw materials production and energy mix.

Environmental impact category	Fossil PEF membrane	Recycled PET	Partially biobased PET
GWP, excl biogenic carbon [kg CO ₂ eq.]	89.1783	89.1079	89.17
GWP, incl biogenic carbon [kg CO ₂ eq.]	89.2095	89.14213	89.19
Fine Particulate Matter Formation [kg PM2.5 eq.]	0.016047	0.015977	0.02
Fossil depletion [kg oil eq.]	27.53959	27.48943	27.53
Freshwater Consumption [m ³]	-0.15793	-0.15905	-0.16
Freshwater ecotoxicity [kg 1,4 DB eq.]	0.140411	0.140139	0.14
Freshwater Eutrophication [kg P eq.]	0.021858	0.021848	0.02
Human toxicity, cancer [kg 1,4-DB eq.]	3.946625	3.941063	3.94
Human toxicity, non-cancer [kg 1,4-DB eq.]	16.65411	16.61871	16.62
Ionizing Radiation [kBq Co-60 eq. to air]	-3.42266	-3.42485	-3.43
Land use [Annual crop eq.·y]	0.519642	0.519662	0.57
Marine ecotoxicity [kg 1,4-DB eq.]	0.265714	0.265231	0.26
Marine eutrophication [kg N eq.]	0.000739	0.000743	0.00
Metal depletion [kg Cu eq.]	0.181918	0.18164	0.18
Photochemical Ozone Formation, Ecosystems [kg NOx eq.]	1.525673	1.525515	1.53
Photochemical Ozone Formation, Human Health [kg NOx eq.]	0.973421	0.973273	0.97
Stratospheric Ozone Depletion [kg CFC-11 eq.]	6.97E-06	6.28E-06	0.00
Terrestrial Acidification [kg SO ₂ eq.]	0.143705	0.143531	0.14
Terrestrial ecotoxicity [kg 1,4-DB eq.]	148.406	148.1717	147.89

Supplementary Table 32. Environmental impacts of the production of 1 m² of PEF membrane under different energy geographical scopes. Other parameters were kept as: supercritical fluid extraction, Bio-EtOH, and incineration without energy recovery. S-MF refers to the membrane fabrication subprocess, and S-WI refers to the waste incineration subprocess (without energy recovery).

Environmental impact category	GLO			EUROPE			MIDDLE EAST			NORTH AMERICA		
	S-MF	S-WI	Total	S-MF	S-WI	Total	S-MF	S-WI	Total	S-MF	S-WI	Total
GWP, excl biogenic carbon [kg CO ₂ eq.]	3.92	30.84	76.29	1.93	30.84	74.30	4.58	30.84	76.95	2.42	30.84	74.79
GWP, incl biogenic carbon [kg CO ₂ eq.]	3.94	30.84	68.92	1.99	30.84	66.97	4.58	30.84	69.56	2.43	30.84	67.41
Fine Particulate Matter Formation [kg PM2.5 eq.]	0.01	0.00	0.06	0.00	0.00	0.05	0.00	0.00	0.06	0.00	0.00	0.06
Fossil depletion [kg oil eq.]	1.40	0.00	28.31	1.09	0.00	28.01	1.57	0.00	28.49	1.13	0.00	28.05
Freshwater Consumption [m ³]	0.03	0.00	0.06	0.03	0.00	0.07	0.01	0.00	0.04	0.03	0.00	0.06
Freshwater ecotoxicity [kg 1,4 DB eq.]	0.01	0.00	0.15	0.01	0.00	0.15	0.00	0.00	0.14	0.01	0.00	0.15
Freshwater Eutrophication [kg P eq.]	0.00	0.00	0.03	0.00	0.00	0.03	0.00	0.00	0.03	0.00	0.00	0.03
Human toxicity, cancer [kg 1,4-DB eq.]	0.20	0.00	3.31	0.17	0.00	3.28	0.09	0.00	3.20	0.15	0.00	3.26
Human toxicity, non-cancer [kg 1,4-DB eq.]	1.24	0.00	17.04	1.01	0.00	16.82	0.27	0.00	16.07	0.83	0.00	16.64
Ionizing Radiation [kBq Co-60 eq. to air]	0.47	0.00	0.93	1.15	0.00	1.61	0.04	0.00	0.50	0.83	0.00	1.29
Land use [Annual crop eq.·y]	0.05	0.00	33.62	0.06	0.00	33.62	0.01	0.00	33.57	0.05	0.00	33.61
Marine ecotoxicity [kg 1,4-DB eq.]	0.02	0.00	0.25	0.02	0.00	0.25	0.01	0.00	0.24	0.01	0.00	0.25
Marine eutrophication [kg N eq.]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Metal depletion [kg Cu eq.]	0.00	0.00	0.11	0.00	0.00	0.11	0.00	0.00	0.11	0.00	0.00	0.11
Photochemical Ozone Formation, Ecosystems [kg NO _x eq.]	0.80	0.00	0.93	0.80	0.00	0.92	0.80	0.00	0.93	0.80	0.00	0.92
Photochemical Ozone Formation, Human Health [kg NO _x eq.]	0.50	0.00	0.61	0.50	0.00	0.61	0.50	0.00	0.61	0.50	0.00	0.61
Stratospheric Ozone Depletion [kg CFC-11 eq.]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Terrestrial Acidification [kg SO ₂ eq.]	0.01	0.00	0.17	0.01	0.00	0.16	0.01	0.00	0.17	0.00	0.00	0.16
Terrestrial ecotoxicity [kg 1,4-DB eq.]	3.91	0.00	106.31	3.23	0.00	105.63	9.77	0.00	112.17	2.53	0.00	104.93

Supplementary Table 33. Environmental impacts and coefficients of variation to produce 1 m² of PEF membrane fabrication under different energy geographical scopes. The rest of parameters were kept as the baseline.

Environmental impact category	GLO	EU	MER	RNA	Coefficient of variation (%)
GWP, excl biogenic carbon [kg CO ₂ eq.]	51.73	58.89	49.46	56.94	7.03
GWP, incl biogenic carbon [kg CO ₂ eq.]	44.30	51.30	42.07	49.52	8.02
Fine Particulate Matter Formation [kg PM2.5 eq.]	0.02	0.04	0.04	0.04	19.42
Fossil depletion [kg oil eq.]	19.60	20.61	18.87	20.65	3.74
Freshwater Consumption [m ³]	-0.06	-0.08	0.01	-0.06	-68.54
Freshwater ecotoxicity [kg 1,4 DB eq.]	0.10	0.10	0.13	0.11	10.63
Freshwater Eutrophication [kg P eq.]	0.02	0.02	0.02	0.02	11.19
Human toxicity, cancer [kg 1,4-DB eq.]	2.52	2.64	2.89	2.68	4.88
Human toxicity, non-cancer [kg 1,4-DB eq.]	11.56	12.34	14.87	12.95	9.47
Ionizing Radiation [kBq Co-60 eq. to air]	-1.14	-3.46	0.32	-2.36	-84.81
Land use [Annual crop eq.:y]	33.38	33.37	33.54	33.39	0.20
Marine ecotoxicity [kg 1,4-DB eq.]	0.18	0.19	0.20	0.19	4.85
Marine eutrophication [kg N eq.]	0.00	0.00	0.00	0.00	10.37
Metal depletion [kg Cu eq.]	0.10	0.10	0.10	0.10	1.58
Photochemical Ozone Formation, Ecosystems [kg NOx eq.]	0.88	0.90	0.87	0.90	1.52
Photochemical Ozone Formation, Human Health [kg NOx eq.]	0.57	0.59	0.56	0.59	2.26
Stratospheric Ozone Depletion [kg CFC-11 eq.]	0.00	0.00	0.00	0.00	11.20
Terrestrial Acidification [kg SO ₂ eq.]	0.11	0.13	0.11	0.14	10.99
Terrestrial ecotoxicity [kg 1,4-DB eq.]	90.34	92.69	70.33	95.07	11.28

Supplementary Table 34. Environmental impacts of the production of 1 m² of PEF membrane under the optimal scenario (supercritical fluid extraction, bio-based ethanol, waste recycling plus incineration with energy recovery, global raw materials production and energy mix).

Environmental impact category	Membrane production	Non-solvent production	Polymer production	Solvent distillation	Solvent production	Waste incineration with energy recovery	Total
GWP, excl biogenic carbon [kg CO ₂ eq.]	3.92	6.83	0.90	1.63	2.31	1.25	16.85
	3.94	-27.11	0.90	1.63	-5.16	1.24	-
GWP, incl biogenic carbon [kg CO ₂ eq.]							24.56
Fine Particulate Matter Formation [kg PM2.5 eq.]	0.01	0.02	0.00	0.00	0.00	-0.01	0.03
Fossil depletion [kg oil eq.]	1.40	1.93	0.38	0.57	1.56	-1.74	4.10
Freshwater Consumption [m ³]	0.03	1.14	0.01	0.00	0.01	-0.02	1.16
Freshwater ecotoxicity [kg 1,4 DB eq.]	0.01	0.22	0.00	0.00	0.01	-0.01	0.23
Freshwater Eutrophication [kg P eq.]	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Human toxicity, cancer [kg 1,4-DB eq.]	0.20	0.60	0.05	0.00	0.19	-0.16	0.88
Human toxicity, non-cancer [kg 1,4-DB eq.]	1.24	9.40	0.30	0.00	1.19	-1.10	11.04
Ionizing Radiation [kBq Co-60 eq. to air]	0.47	0.23	0.07	0.00	0.05	-0.41	0.41
Land use [Annual crop eq.y]	0.05	10.95	0.01	0.00	33.03	-0.05	44.00
Marine ecotoxicity [kg 1,4-DB eq.]	0.02	0.09	0.00	0.00	0.02	-0.01	0.12
Marine eutrophication [kg N eq.]	0.00	0.02	0.00	0.00	0.00	0.00	0.02
Metal depletion [kg Cu eq.]	0.00	0.04	0.00	0.00	0.00	0.00	0.05
Photochemical Ozone Formation, Ecosystems [kg NO _x eq.]	0.80	0.03	0.00	0.00	0.01	-0.01	0.84
Photochemical Ozone Formation, Human Health [kg NO _x eq.]	0.50	0.03	0.00	0.00	0.01	-0.01	0.54
Stratospheric Ozone Depletion [kg CFC-11 eq.]	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Terrestrial Acidification [kg SO ₂ eq.]	0.01	0.07	0.00	0.00	0.01	-0.01	0.09
Terrestrial ecotoxicity [kg 1,4-DB eq.]	3.91	38.33	2.46	0.01	12.48	-3.20	54.00

Supplementary Table 35. Comparison with other literature reports on LCA on bio-based materials for membrane fabrication.

System	Bio-based membrane		Fossil-based membrane		Non-solvent	Membrane type	GWP 100 (kg CO ₂ eq per m ²)	GWP change (%)	Reference	
	Polymer	Solvent	Polymer	Solvent						
Biobased polymer and solvent	Polyethylene furanoate	1:4 M tymol/vanillin	Polyethylene terephthalate	Trifluoroacetic acid	Ethanol	Flat sheet	51.73	89.18	-42.0	This work (baseline)
	Polyethylene furanoate	1:4 M tymol/vanillin	Polyethylene terephthalate	Trifluoroacetic acid	Bio-ethanol	Flat sheet	16.85	25.98	-35.1	This work (optimal vs. PET with bioethanol + waste recycling)
	Cellulose diacetate	Methyl lactate	Cellulose triacetate	N-methyl-2-pyrrolidone	15 v% glycerol in water	Hollow fiber	9.4	11	-14.5	Prézélus, et al. ¹⁵
Biobased polymers	Polyethylene terephthalate (partially biobased)	Trifluoroacetic acid	Polyethylene terephthalate	Trifluoroacetic acid	Ethanol	Flat sheet	89.17	89.18	-1.1E-4	This work (fossil ethanol and incineration with energy recovery)
	Polyethylene terephthalate (partially biobased)	Trifluoroacetic acid	Polyethylene terephthalate	Trifluoroacetic acid	Bio-ethanol	Flat sheet	25.97	25.98	-3.8E-4	This work (bioethanol and waste recycling)
	Cellulose acetate	N-methyl-2-pyrrolidone	Polyvinylidene fluoride	N-methyl-2-pyrrolidone	Water	Hollow fiber	5.375	6.377	-15.7	Prézélus, et al. ¹⁵
Green solvents	Polyvinylidene fluoride	Ethylene carbonate	Polyvinylidene fluoride	N-methyl-2-pyrrolidone	Water	Hollow fiber	4.532	6.377	-28.9	Yadav, et al. ¹⁶ (GLO)
	6FDA-durene polyimide	Dimethyl sulfoxide	6FDA-durene polyimide	N-methyl-2-pyrrolidone	N/A	Flat sheet	162.93	182.84	-10.9	Yadav, et al. ¹⁶ (GLO)
	6FDA-durene polyimide	Ethyl acetate	6FDA-durene polyimide	N-methyl-2-pyrrolidone	N/A	Flat sheet	166.47	182.84	-9.0	Hong, et al. ¹⁷
	6FDA-durene polyimide	γ-butyrolactone	6FDA-durene polyimide	N-methyl-2-pyrrolidone	N/A	Flat sheet	175.38	182.84	-4.1	Hong, et al. ¹⁷

References

1. I. ISO, *Environmental management—Life cycle assessment—principles and framework*, 2006, **578**, 235-248.
2. I. ISO, *Environmental management—Life cycle assessment—Requirements and guidelines*, 2006, 1-46.
3. F. Piccinno, R. Hischier, S. Seeger and C. Som, *Journal of Cleaner Production*, 2016, **135**, 1085-1097.
4. P. D. Beer and P. A. Gale, *Angewandte Chemie International Edition*, 2001, **40**, 486-516.
5. B. A. Pulido, O. S. Habboub, S. L. Aristizabal, G. Szekely and S. P. Nunes, *ACS Applied Polymer Materials*, 2019, **1**, 2379-2387.
6. A. Muralidhara, E. De Jong, H. A. Visser, G.-J. M. Gruter, C. Len, J.-P. Bertrand and G. Marlair, *ACS omega*, 2022, **7**, 9181-9195.
7. S. Bello, I. Salim, P. Méndez-Trelles, E. Rodil, G. Feijoo and M. T. Moreira, *Holzforschung*, 2018, **73**, 105-115.
8. Á. C. Sánchez, O. T. Berglihn, E. Ottaviano, T. Rücker, T. Pettersen, B. Wittgens, A. Aliko, L. Gálvez and M. López, *Open Research Europe*, 2024, **4**, 5.
9. C. Moretti, R. Hoefnagels, M. van Veen, B. Corona, S. Obydenkova, S. Russell, A. Jongerius, I. Vural-Gürsel and M. Junginger, *Journal of Cleaner Production*, 2022, **343**, 131063.
10. 2021.
11. Z. Limam, C. Azzaro-Pantel, N. Hajjaji, M. Romdhane and J. Bouajila, *Computers & Chemical Engineering*, 2025, **200**, 109140.
12. A. I. Gavrila, C. G. Chisega-Negrila, L. Maholea, M. L. Gavrila, O. C. Parvulescu and I. Popa, *Agronomy*, 2023, **13**, 2331.
13. D. Villanueva Bermejo, I. Angelov, G. Vicente, R. P. Stateva, M. Rodriguez García-Risco, G. Reglero, E. Ibañez and T. Fornari, *Journal of the Science of Food and Agriculture*, 2015, **95**, 2901-2907.
14. E. De Falco, M. Pergola, A. Vece, C. Angiuoni and G. Celano, *Italian Journal of Agronomy*, 2020, **15**, 1505.
15. F. Prélus, J.-C. Remigy, C. Guigui and L. Tiruta-Barna, *Journal of Cleaner Production*, 2022, **337**, 130476.
16. P. Yadav, N. Ismail, M. Essalhi, M. Tysklind, D. Athanassiadis and N. Tavajohi, *Journal of Membrane Science*, 2021, **622**, 118987-118987.
17. S. U. Hong, Y. Wang, L. S. Soh and W. F. Yong, *Green Chemistry*, 2023, **25**, 4501-4512.