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Tab. S1 Summary of the performance of the organic-, aqueous- and lignosulfonate (LS)- based
electrochemical capacitors (ECs).

Neutral aqueous-

Organic-based EC LS-based EC
based EC
Ionic conductivity ~10-50 mS cm’! 12 ~100 mS cm™! 3 ~10 mS cm’!
Voltage range 25V-30V 43 08V-16V o7 08V-16V
Gravimetric II0F g! 8 123 Fg!? 100 F g'!
capacitance (1AghH (1Agh (1AghH
Energetic efficiency ~ 60-85% 10 ~85% M 82%
Energy density ~30 Whkg! 43 ~20 Whkg! *12 ~10 Wh kg!
Power density ~20 kW kg! 43 ~ 10 kW kg! 212 ~30 W kg!
Leakage current <8.0mA * ~30mAg!' ~20 mA g'!
Lifetime 1500 h 4 120h 13 170 h
>1 000 000 cycles *14 >100 000 cycles '3 -
Self-discharge From2.7V 10267V | From1.6Vt0097V | From1.6Vtol1l.1V
Loss of ~3% 13 Loss of ~40% !¢ Loss of ~ 30%
Assembly Inert 7 Air 7 Air
Safety Low 7 Moderate ’ High
Sustainability Low 7 Moderate !7 High




Tab. S2 Summary of the advantages and disadvantages of the gel electrolytes in the electrochemical

capacitors.
Device/Type of the
Ref. Advantages Disadvantages
gel electrolyte
_ . - Lower ionic conductivity of
Flexible - Electrolyte leakage is reduced
gel than for liquid electrolyte
18 supercapacitor - Temperature robustness up to
solution (difference of 10 mS
(NaClO4+ PVA) 80°C
cm!)
, - Combination of EDL - Decrease of ionic
Supercapacitor ) ) o .
formation and faradaic conductivity and mobility of
(KOAc +
. reactions Na* and CH;COO" within the
19 gelatin/glycerol, ) .
- Increased ion adsorption at gel structure
NaCl +
. the electrode/electrolyte
gelatin/glycerol) )
interface
. ) - Low ionic conductivity
- Good mechanical properties
Supercapacitor ] ] - The gel electrolyte requires
- Better capacitance retention
(KOH + ~2 days of aging before it
20 ) ) than liquid electrolyte .
chitosan/glyoxylic becomes mechanically
- Inhibiting corrosion issues in
acid) exploitable
the cell o
- Limited voltage (0.8 V)
- High ionic conductivity and
Flexible o ) o
) mechanical integrity (10 mS - Limited voltage of the system
supercapacitor
21 cm!) due to use of aqueous based
(KOH + alkali
- Flexibility and durability of medium
lignin/PVA/PEGDGE)
the crosslinked gel network
. - High swelling capacity o o
Supercapacitor o - Low ionic conductivity
- Flexibility confirmed by
2 (KOH + - Voltage limitation (up to
stable capacitance under
lignin/PEGDGE) 1.0V)
bending and twisting
- Flame retardant performance
Supercapacitor (oxygen index of 35%)
s (LiOAc + Lithium - High ionic conductivity (33 - Reduced mechanical strength
alginate; mS cm') at high salt concentration
LiOAc + PVA) - High operating voltage of 1.8
\Y%




Gel Polymer Electrolyte
Market Overview

MARKET SIZE

UsD UsD
1.63 4.63
BILLION BILLION

(2025) (2035)

KEY PLAYERS IN THE MARKET
— Du Pont de Nemours, Inc.
— 3M Company
— BASF SE
— Celanese Corporation
— Heraeus Holding Gmbh
— TaiSan
— Solvay S.A.

Market share (in %) by region

Latin America 5%
Middle East

& Africa
8%

North
America
38%

Europe
18%

Asia Pacific
3%

Fig. S1 Schematic diagram of the current and the future demand and supply of the gel electrolytes (data

extracted from ref?#).

Tab. S3 Summary of the type/example of the polymer used in the gel electrolyte and its climate change
potential (CPP) and cumulative energy demanded (CED).

Climate change
Type of the Example of the Cumulative energy
potential (CCP)
polymer used in | polymer used in the gel demand (CED)
(kg CO;-eq / kg of
the gel electrolyte electrolyte (MJ / kg)
polymer)
) Polyvinylidene fluoride
Petrochemical- 55.80 % 756 %
(PVDF)

based

Polyacrylonitrile (PAN) 10.64 26 245727
Biomass-

Silk fibroin 1.30%8 1843 %

based
Sodium lignosulfonate 3.23 28 48.8 30

Biopolymer- —

Kraft lignin 2.80 % 31.53

based

Cellulose pulp 0.21 8 93 32




Tab. S4 Quantities of hydroxyl and carboxylic groups in mmol g'! calculated using *'P NMR analysis.

Quantity
Sample (mmol g7)
Aliphatic -OH Aromatic -OH | Carboxylic-COOH Total -OH
LS 2.62 1.53 0.31 4.46

Tab. S5 Composition ratios of lignosulfonate (LS) / crosslinker (PEGDGE) — based gels.

Mn PEGDGE mmol mmol epoxy /
g PEGDGE / LS wt.% in
PEGDGE wt.% in the PEGDGE / g mmol OH
g LS the gel
(g / mol) gel LS total of LS
1099 0.4 28 72 0.36 0.17

Fig. S2 a-c) Cryo SEM images of LS hydrogel.

Stress (kPa)

LS hydrogel

0 2 4 6 8 10 12 14 186
Strain (%)

Fig. S3 Compression test result of LS hydrogel.
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Fig. S4 Physicochemical characterization (ionic conductivity, pH, and viscosity) of selected aqueous

Ckoac (Mol (kg H,0)™)

viscosity (mPa s™) viscosity (mPa s™)

viscosity (mPa s™)

electrolytes in different concentrations 1, 3, and 5 m: a) LiOAc, b) NaOAc, ¢) KOAc.



Tab. S6 Selected thermodynamic and physical characteristics of ions used in the preparation of gel
electrolytes and synthesis of salt templated carbons for ECs testing33-3.

Crystal ionic Hydrated Hydration Binding Ton mobilit
Ion diameter ion diameter enthalpy energy (10 m? s V).’1)
(nm) (nm) (-kJ mol?) (kcal mol)
Li* 0.152 0.680 520 38 4.01
Na* 0.232 0.598 406 28 5.20
K* 0.304 0.662 322 19 7.60

Tab. S7 Selected mass concentrations and molalities of potassium acetate (KOAc).

Molality Mass concentration

mol (kg H,0)! (%)
1 9
3 23
5 33
7 41
10 50
11 51
15 60
19 65
24 70
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Fig. S5 Physicochemical characterization (ionic conductivity, pH, and viscosity) of KOAc in different

concentrations (1 — 24 m).

Fig. S6 a-b) HRTEM images of YPS8OF commercial carbon using different scales.
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Fig. S7 a) Nitrogen sorption at 77K and b) pore size distribution of the YP80F commercial carbon. The

vertical dash lines present solvated ion diameter of cation (K*) and anion (OAc).

Tab. S8 Textural properties of YP8OF activated carbon determined by nitrogen sorption: specific surface
area (Sget, Sprr), C value of BET, volume of micropores (V i), volume of mesopores (Ves0), average
diameter of micropores (Lg micro), average diameter of mesopores (Lg meso) and Raman I/l ratio.

SBET SDFT Vmicro Vmeso LO micro LO meso Ih,/1
carbon | mrghy | VAN | migt) | emigt) | (emig) | @m) | @m) | UC
2018
YP8OF 131 332 1666 0.78 0.24 1.03 2.86 2.50
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Fig. S8 Raman spectra deconvoluted into four peaks using Lorentzian fitting function of commercial

carbon (YP8OF).

Tab. S9 Elemental analysis results of LS-carbons (CLS-SA, CLS-NaOAc, CLS-KOAc, CLS-NaKOAc)

and commercial carbon (YPSOF).

Total
Carbon Cwt.% H wt.% N wt.% S wt.% O wt.% | heteroatoms

wt.%
CLS-SA 87.4 0.7 0.2 0.2 6.0 7.1
CLS-NaOAc 85.0 0.3 0.8 0.1 6.7 7.9
CLS-KOAc 85.5 0.3 0.3 0.3 7.5 8.4
CLS-NaKOAc 86.8 0.4 0.1 0.9 5.0 6.4
YP8OF 94.6 0.5 0.1 0.0 1.9 2.5

10



Fig. S9 HRTEM images of LS-carbons: a) CLS-SA, b) CLS-NaOAc, ¢) CLS-KOAc, d-f) CLS-
NaKOAc.
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Fig. S10 Raman spectra deconvoluted into four peaks using Lorentzian fitting function of: a) CLS-SA,
b) CLS-NaOAc, ¢) CLS-KOAc, d) CLS-NaKOAc carbons.

Tab. S10 Summary of the size (height) of stacked graphene layers (La) and Ip/I; area ratio after two
peaks fitting of salt templated carbons.

Carbon (II;:;) To/l
CLS-SA 6.42 2.61+£0.07
CLS-NaOAc 5.96 2.81+£0.01
CLS-KOAc 5.58 3.00+0.09
CLS-NaKOAc 12.33 1.37+0.05
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Tab. S11 Textural properties of LS-carbons determined by nitrogen sorption: specific surface area (Sggr,
Sprr), C values of BET, volume of micropores (V i), volume of mesopores (Vi,es0), average diameter
of micropores (Lg micro), average diameter of mesopores (Lo meso)-

SBET C Value SDFT Vmicro Vmeso LO micro LO meso
Carbon | (2 g1 mgh) | (emg) | emigh | @m) | (am)
CLS-SA 1079+10 462 965 0.35 0.38 1.06 4.29
CLS-NaOAc 881+2 839 825 0.31 0.05 0.79 3.20
CLS-KOAc 1754+6 746 1587 0.63 0.05 0.79 2.88
CLS-NaKOAc 1169+5 454 1035 0.42 0.18 0.85 4.08
96 8
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Fig. S11 Plots of C value and: a) C wt. %, b) O wt.%, c) total heteroatoms wt.%.
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Tab. S12 Textural properties of LS-carbons determined by nitrogen sorption: specific surface area
(Sggr), volume of micropores (Vyicro), volume of mesopores (Vieso), average diameter of micropores
(Lo micro), average diameter of mesopores (Lo meso) and Raman I, /I ratio.

SBET Vmicro Vmeso LO micro LO meso IDI/ IG

carbon m2g") | (em*g") | (em’g") | (nm) (nm)
CLS‘(I;I?‘II?OAC 1169+5 |  0.42 0.18 0.85 4.08 1.37
CLS‘g?§OA° 75241 | 0.27 0.04 0.75 3.60 1.80

Tab. S13 Reported gravimetric capacitance values of LS-based ECs operating in LS—5 m KOAc GE.

1.6 V/LS CLS-SA CLS-NaOAc CLS-KOAc¢ CLS-NaKOAc
Current density Gravimetric capacitance
(Agh (Fgh

0.1 81+1 771 11944 82+5
0.2 7742 67+1 108+3 72+3
0.5 63+4 46+6 82+1 52+3

1 48+4 2944 58+4 2942

2 2744 945 28+4 9+4

14
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Fig. S12 Capacitance retention vs. frequency of LS-carbons-based ECs and commercial carbon YP80F
operating in LS-5 m KOAc GE at 1.6 V.
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amount of oxygen in wt.% vs. gravimetric capacitance (0.5 A g!).
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Fig. S14 Relative resistance vs. floating time of LS-carbons-based ECs operating in LS-5 m KOAc GE
at1.6 V.

Tab. S14 Summary of the electrochemical performance of ECs.

Specific . .
Electr(?de surface Electrolyte Gravn.netrlc Lifespan | Ref.
material area capacitance
Salt templated . .| PEGDGELS+5m |82Fglat05ag| 2200 | g
carbon 1754 m* g KOAC gel electrolyte (1.6 V) floating work
(KOAC/LS) & y : at1.6 v
Salt templated . .| PEGDGELS+5m |52Fglat0sagt| OROm | .
carbon 1169 m* ¢ KOACc gel electrolyte (1.6 V) floating work
(NaKOAC/LS) & y : at1.6 Vv
Spinning of s PEGDGE/hgn1n1+ 129F g'at0.5 A 10’0100 ’
lignin/PAN 1176 m* g 3.3 M KOH ge 1 (1.0V) cycles
electrolyte ) (95%)
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