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His¢-BINahK-SnoopCatcher
MSYYHHHHHHGSGGSGSTESNEVLFGIASHFALEGAVTGIEPYGDGHINTTYLVTTD
GPRYILQQMNTSIFPDTVNLMRNVELVTSTLKAQGKETLDIVPTTSGATWAEIDGGA
WRVYKFIEHTVSYNLVPNPDVFREAGSAFGDFQNFLSEFDASQLTETIAHFHDTPHRF
EDFKAALAADKLGRAAACQPEIDFYLSHADQYAVVMDGLRDGSIPLRVTHNDTKLN
NILMDATTGKARAIIDLDTIMPGSMLFDFGDSIRFGASTALEDEKDLSKVHFSTELFRA
YTEGFVGELRGSITAREAELLPFSGNLLTMECGMRFLADYLEGDIYFATKYPEHNLVR
TRTQIKLVQEMEQKASETHAIVADIMEAARELGSPANLKALEAQKOQKEQRQAAEELA
NAKKLKEQLEKGSHMKPLRGAVFSLQKQHPDYPDIYGAIDQNGTYQNVRTGEDGKL
TFKNLSDGKYRLFENSEPAGYKPVQNKPIVAFQIVNGEVRDVTSIVPQDIPATYEFTN
GKHYITNEPIPPK

Hise-PmGImU-SnoopTag
MHHHHHHKEKALSIVILAAGKGTRMYSDLPKVLHKIAGKPMVKHVIDTVKSIHAKNI
HLVYGHGGEVMQTRLQDEPVNWVLQAEQLGTGHAMQQAAPFFADDENILMLYGD
GPLITAKTLQTLIAAKPEHGIALLTVVLDDPTGYGRIVRENGNVVAIVEQKDANAEQL
KIQEINTGLLVADGKSLKKWLSQLTNNNAQGEYYITDVIALANQDGCQVVAVQASN
FMEVEGVNNRQQLARLERYYQRKQADNLLLAGVALADPERFDLRGELSHGKDVEID
VNVIIEGKVSLGHRVKIGAGCVLKNCQIGDDVEIKPYSVLEEAIVGQAAQIGPFSRLRP
GAALADNTHIGNFVEIKKAHIGTGSKVNHLSYVGDAEVGMQCNIGAGVITCNYDGA
NKFKTIIGDNVFVGSDVQLVAPVTIETGATIGAGTTVTKDVACDELVISRVPQRHIQG
WQRPTKQTKKKLGDIEFIKVNK

SnoopCatcher

SnoopTag

The sequence underlined denotes the linker chain connecting BINahK and SnoopCatcher
The underlined and italic /V and_K are the amino acids for the self-condensation coupling of

BINahK-SnoopCatcher and PmGImU-SnoopTag, respectively.

Fig. S1 Amino acid sequences of Hisg-BINahK-SnoopCatcher and Hisg-PmGImU-SnoopTag,
with key at the bottom.
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transamidation

- Hiss-BINahK-PmGImU-His,
Hisg-BINahK-SnoopCatcher
Fig. S2 Structural diagrams of Hisg-BINahK-SnoopCatcher (a), His¢-PmGImU-SnoopTag (b),
and His¢-BINahK-PmGImU-Hisg dual-enzyme conjugae (c) and the schemen of spontaneous
transamidation reaction that used for dual-enzyme conjugation (d). For (a), cyan denotes the
BINahK, purple denotes the SnoopCatcher linker protein, orange denotes the linker chain
connecting BINahK and SnoopCatcher, and blue denotes the His-Tag. For (b), green denotes
the PmGImU, red denotes the SnoopTag tag, and blue denotes the Hisq tag. For (c), Hisg-
BINahK-SnoopCatcher and Hisg-PmGImU-SnoopTag are connected via the side chains of

Asn (asparagine) and Lys (lysine) via spontaneous transamidation reaction.



Hisg-BINahK Hisg&-PmGImU Hiss-BINahK-SnoopCatcher His;-PmGImU-SnoopTag
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Fig. S3 Protein purification of Hiss-BINahK, His-PmGImU, Hiss-BINahK-SnoopCatcher and
Hise-PmGImU-SnoopTag, where BI denotes the protein before induction, Al denotes the
protein after induction, SP denotes the soluble protein, and PP denotes the fractions of

purified protein.
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Fig. S4 SDS PAGE analysis of B-P dual-enzyme construction, M: Marker, 1: Hisg-BINahK-
SnoopCatcher, 2: His¢-PmGImU-SnoopTag, and 3: Hisg-BINahK—PmGImU-Hisg.
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Fig. S5 Activity comparison of Hisg-BINahK and Hisg-BINahK-SnoopCatcher, Hisg-

PmGImU and Hisg-PmGImU-SnoopTag. Error bars represent the standard deviation of the

mean of duplicate reactions.
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Fig. S6 Activity comparison of B-P dual-enzyme conjugate and B+P free enzymes. Error bars

represent the standard deviation of the mean of duplicate reactions.
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Fig. S7 Activity comparison of B-P dual-enzyme conjugate and B+P free enzymes with
different concentrations. 0.2 uM, 1 pM and 5 uM of B-P or each eznyme, 2.4 mM of ATP,
2.4 mM of UTP, 2 mM of GIcNAc, | mM MgCl, were used in a Tris-HCI buffer (pH 8.0, 100

mM), reactions were allowed to proceed for 30 min at 37°C. Error bars represent the standard

deviation of the mean of duplicate reactions.
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Fig. S8 Condition optimization for ZIF-8 (a) and Ni-ZIF-8 synthesis (b). (a) ZIF-8

nanoparticles are formed by 2-MIM and Zn?* at 0.16 M molar concentrations and different

ratios from 16:01 to 16:10, (b) Ni-ZIF-8 nanoparticles were synthesized with a total metal

concentration of 0.02 M, by varying the molar ratio of Zn** to Ni** from 1:0.5 to 1:20.
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Fig. S9 Yield (a) and DLS analysis(b) of ZIF-8 with different conditions (as described in Fig.

S8a), Error bars represent the standard deviation of the mean of duplicate samples.

(a) 2 (b) 2500 35
2000 Zeta
154 1500 | o Size k30 g
2 ~ 1000~ =
- E 500 ™ 3 5
— . ~— N -
£ g 500 W 25 3
D N I 5
m f=
? 5
59 250 - =
0= r—T—T—T—T—T—T15
N\ N o \"% S B N AN
NG \- A N \:‘ N \-_ A \. \.

Ni-ZIF-8 (Mz,”" : M) Ni-ZIF-8 (M2 : My>)

Fig. S10 Yield (a) and DLS analysis(b) of Ni-ZIF-8 with different conditions (as described in

Fig. S8b), Error bars represent the standard deviation of the mean of duplicate samples.
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Fig. S11 SEM images and size ana1y31s of Ni-ZIF-8 (a) and B -P@Ni-ZIF-8 (b). For the size
alysis, ImageJ was used to caculate the size of 100 particles in each veiw.

(a) (b) KD M 1 2 3 4 5 6 (C) kb M 1 2
B-P@Ni-ZIF-8 166 e
w0 w B-P 15
%3 = 100 = - - - 100
2 N% 70
i 0 . 55
& 7 5 - 40
" . - w w P
igh o 40— 3s
b - e w p
35 - 25
Immobilization
stability ) 25 -
ST MM ‘ L “His M zZn*/Nit - 10

Fig. S12 Scheme of B-P@Ni-ZIF-8 formation through the affinity interaction between the
dual-His, tag and metals on the surface of MOF (a) Analysis of the interaction between B-P
and Ni-ZIF-8 by a elution assay and SDS-PAGE (b) M: marker; 1: B+P; 2: B-P; 3 and 5 are
B+P@Ni-ZIF-8 eluted with 100 mM imidazole and 250 mM imidazole respectively.; 4 and 6
are B-P@Ni-ZIF-8 eluted with 100 mM imidazole and 250 mM imidazole respectively; (¢) M:
marker; Lanes 1 and 2: SDS-PAGE analysis of the enzymes eluted from B+P@Ni-ZIF-8 and
B-P@Ni-ZIF-8 by 500 mM NaCl, respectively.
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Fig. S13 WT-EXAFS of Zn, Zno and ZIF-8 (a) and Ni, NiO, NiOH, (b) edges, depicting k-R
intensity contours.
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Fig. S14 HPLC chromatograms of ATP, UTP, ADP and UDP-GIcNAc detected at 254 nm.



Table S1 Michaelis-Menten steady-state kinetic parameters

ATP
Enzymatic system
KM/""M Vmax/ HmOl-min'l kcat/s_:l kcat/KM/l‘“v'_l-s_1
B 0.21 14.32 46.62 220.95
B@Ni-ZIF-8 2.35 15.06 50.15 21.34
B-P@Ni-ZIF-8 1.11 11.32 37.70 33.84
UTP
Enzymatic system
KM/P'M Vmax/ HmOl-min'l kcat/s_:l kcat/KM/l‘“v'_l-s_1
P 2.03 26.41 87.94 43.23
P@Ni-ZIF-8 1.37 46.99 156.48 114.30
B-P@Ni-ZIF-8 1.40 44.88 149.45 106.90
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Fig. S15 Recyclability test of free B and P in a dialysis approach. Error bars represent the
standard deviation of the mean of duplicate reactions.
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Table S2 Representative Strategies Reported for the Enzymatic Production of Sugar

Nucleotides
Strategy GlcNAc, Enzyme Cycles Improved UDP-GIcNAc References
concentration (activity) catalytic yield/(time)
efficiency
BINahK+ PmGImU+ PmPpA  GIcNAc (50 to 300 / / 81% (24 to [1]
(free enzyme in solution) mg, 1.0 eq.), 48 h)
NanK (3.2-4.8 mg),
PmGImU (5-7.5
mg),
PmPpA (2.5-5 mg),
trGImU-NahK (enzyme GIcNACc (25 mM), / / 77% (12 h) [2]
fusion) trGlImU—NahK
(12.55 uM)
BINahK@ECR8309F and GIcNAc (8 mM), (Batch)/ STY: 0.096 g 95% (48 h)
MtGImU@EziG™ BiNahK (1.64 mg L'th?
(enzymes immbolization mL), MtGImU (0.4 (Flow) 4 STY:1.90g 54% (83 min) (3]
and flow chemistry) mg mL) cycles -1 h-t
(>50%)
NahK-GImU@ZIF- GlcNAc (10 mM), / 1.4-fold 98% (48 h) [4]
90A@PPK (enzyme NahK (0.5 mg/ mL),
encapsulation/co-factor GImU (0.5 mg/ mL),
regenaration) PPK (0.48 mg/ mL)
PSK (PpAmgK, SeGImU and GIcNACc (50 mM), 5 cycles 1.65-fold 57% (90 min) [5]
SePPK)-(G4S)3-CipA Each enzyme was 5 (>60%)
(protein scaffolding) UM
BINahK-PmGImU@Ni-ZIF-8 GIcNAc (2 mM), 5 cycles 4.4-fold 92% (30 min)  This work
(spatial organization on Each enzyme was 5 (>60%)

surface of Ni-ZIF-8)
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Time (ns)

Fig. S16 Radius of gyration (RG) analysis of B-P dual enzyme conjugate in B-P@Ni-ZIF-8

(pink) and in solution (green).
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Table S3 The total free energy decomposition profile in the presence and absence of MOF

In the presence of MOF

VDWAA  EEL  EGB  ESURF  GGAS  GSOLV  TOTAL
Ls
ATP 4137 -15082 17045 863 19219 16182 -30.37
GIcNAc  -4521 -160.15 180.33 -9.07  -20536 17126 -34.1
GIENA“ 4158 15592 17464 884 1975 1658  -3L7
UTP 5143 -170.65 19615 -10.06 _ -222.08 18609  -35.99
In the absence of MOF
VDWAA EEL EGB ESURF GGAS GSOLV TOTAL
Ls
ATP 3824 -11573 14052 731 15397 13321 -20.76
GIcNAc ~ -37.65 -110.28 13584 -7.12  -147.93 12872 -19.21
GIENA“ 4087 10591 13047 695 -14678 12352 2326
UTP 3667 -130.37 14273 9.85  -167.04  132.88 -34.16

Note: The table summarizes the decomposition of binding energy (in kcal/mol) for ATP,
GlcNAc, GIeNAc-1-P, and UTP with B-P in the presence (above) and absence (below) of

MOF.
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Fig. S17 Hydrogen bong number analysis of between B-P and different substrates including
ATP (a), GlcNAc (b), UTP (c) with (pink) and without Ni-ZIF-8 incorporation (green).
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Fig. S18 Zeta potential diagrams of Ni-ZIF-8 in the absence and presence of ATP, GIcNAc,

UTP and GIcNAc-1-P, Error bars represent the standard deviation of the mean of triplicate

samples.
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dual-enzyme conjugate with (pink) and without Ni-ZIF-8 (green).
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Fig. S20 In-situ analysis of GIcNAc-1-P consumption on B-P@Ni-ZIF-8 surface with free
PmGImU and UTP added in the solution.
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Table S4 Primers used for this study

Name Sequences (5’-3’)
SnoopCatcher_
GGTGGTAGCGGTTCTGGATCCACCGAAAGCAATGAAGTTTTATTC
fwd
SnoopCatcher_

GTTAGCCGGGCTACCGAATTCCCTGGCAGCCTCCATGATG
rev

PmGImU- GGAATTCCATATGCACCACCACCACCATCACAAAGAGAAAGCATTAAGTATCG

SnoopTag_fwd TG
PmGImU- CCGCTCGAGTTATTTGTTCACTTTAATAAATTCAATATCGCCCAGTTTCTTTTT
SnoopTag_rev CG

Note: The sequences for SnoopCatcher fwd / SnoopCatcher rev and PmGImU-
SnoopTag fwd / PmGImU-SnoopTag rev were flanked by restriction sites *BamHI /
EcoRI * and * Ndel /Xhol*, respectively. The bolded segments denote the SnoopTag
gene.
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