

**Assessing the Sustainability of Solvometallurgy for Black Mass Processing – the LEACH
(Low-impact Extraction and Assessment of Chemical solvometallurgy) Tool**

Alberto Mannu,^{1*} Maria Enrica Di Pietro,² Marco Yuri Basilico,² Elza Bontempi,¹ Andrea Mele²

^aDepartment of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy

^bINSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy

Corresponding Author: Alberto Mannu, alberto.mannu@unibs.it

Guidelines for LEACH application

LEACH Scoring guide

Step 1. Define the assessment scope

1.1. Select module(s):

- Module 1: Solvent formulation
- Module 2: BM leaching
- Module 3: Overall process (combined score)

1.2. Identify all chemical components, additives, and relevant operational conditions.

Step 2. Data collection

2.1 Gather physical/chemical data:

- GHS hazard codes (H-statements)
- Biodegradability and persistence information
- CRM status of reagents
- Market prices of reagents

2.2 Collect process parameters:

- Temperature, reaction time
- Solid-to-liquid ratio
- Selectivity and yield
- PMI and workup steps
- Solvent and reagent recyclability

2.3 Collect regulatory data:

- ADR/RID classification
- Environmental fate (PBT/vPvB status)

Step 3. Assign subcategory penalties

3.1 For each module, apply the ranges and penalties in Table 4.

3.2 For each subcategory (economic, technical, safety):

- Identify which range applies
- Assign the corresponding penalty value

3.3 Document the justification for each penalty (data source + rule applied).

Step 4. Calculate module scores

4.1 Sum all penalty points within the selected module(s).

4.2 For Modules 1 and 2:

- Lower penalty = more sustainable

4.3 For Module 3 (overall process):

- Final Score = 100 – Total Penalties

Step. Interpret results

5.1 Assign qualitative classification:

- ≥ 75 = ideal / excellent
- 50–75 = acceptable / moderate
- < 50 = non-ideal

5.2 Identify high-penalty subcategories as optimisation targets.

5.3 Compare module results to diagnose sustainability bottlenecks.

Step 6. Reporting

6.1 Provide a complete table listing:

- Raw data
- Penalty assignment
- Module totals

6.2 Provide justification notes for reproducibility.

6.3 If evaluating multiple processes, normalise categories to compare profiles.

LEACH application to an organic-acid hydrometallurgy case¹

Process boundary for scoring.

Aqueous citric acid leachant with 2% v/v H₂O₂ at 80 °C, 60–150 min; solid/liquid 10 g/250 mL; subsequent filtration and oxalate precipitation for downstream recovery. Target critical metal for Module 2/3 selectivity is Co (to keep consistency with our manuscript's framing).

Table 1. Module 1 — Solvent/Formulation

Subcategory	Range chosen	PP	Rationale
Materials cost	10–100 €/kg	7	Lab-scale citric acid/H ₂ O ₂ bracketed as mid-cost; no BOM reported—kept within LEACH's mid tier.
Renewable feedstocks	Partially	5	Citric acid is bio-based/biodegradable; H ₂ O ₂ industrial oxidant → “partially renewable.”
CRMs use	None	0	No CRMs in the leachant.
T×t (formulation)	≤ 25 °C, ≤ 1 h	0	Aqueous make-up; no heated blending needed is reported.
Workup (formulation)	Simple/none	0	No solvent purification steps stated.
Stability	No degradation reported	0	No instability of the <i>formulated</i> leachant noted.
Biodegradability	Components biodegradable	0	Citric acid readily biodegradable; dilute H ₂ O ₂ decomposes.
PMI (formulation)	< 10	0	Make-up of aqueous solution only.
Recyclability	Not reusable (not reported)	5	No solvent reuse loop described.

Subcategory	Range chosen	PP	Rationale
Safety—Intrinsic	Irritant/oxidizer, non-carcinogen	1	Citric acid irritant; 2% H ₂ O ₂ low-hazard oxidizer; no CMRs reported.
Safety—Handling	PPE cat. 1 (standard lab)	0	Standard goggles/gloves implied.
Safety—Emergency	Basic first-aid only	0	No special fire/explosion scenarios at 2% H ₂ O ₂ .
Environmental fate	Biodegradable/inert	0	As above.
Regulatory impact	Not listed	0	No DG transport issues at stated concentrations.

Table 2. BM leaching

Subcategory	Range chosen	PP	Rationale
Yield (Co)	> 90%	0	Co = 90.12% with 2% H ₂ O ₂ .
Temperature × time	> 50 °C (≤ 4 h)	4	80 °C for 60–150 min.
Workup	Multiple steps	4	Filtration + downstream oxalate precipitation.
PMI	10–50	2.5	10 g solid in ~250 g solution → order-of-magnitude PMI in this band (leach step only).
Recyclability	Not reusable (not reported)	5	No leach liquor recycle/regeneration shown.
Selectivity (to Co)	< 70%	4	Process co-leaches Ni and Al by design; relative to <i>Co-selective</i> goal this incurs penalty.
Safety—Intrinsic	Irritant/oxidizer	1	Aqueous organic acid + dilute H ₂ O ₂ ; no CMRs.
Safety—Handling	PPE cat. 1–2	4	Acid/oxidizer handling & hot slurry → upgraded PPE.
Safety—Emergency	Basic first-aid	0	No specific fire/spill special measures described at this dilution.
Environmental fate	Biodegradable/inert	0	Citric acid aqueous system.
Regulatory impact	Not listed	0	Not a transport-restricted operation as reported.

Module 3 — Overall process (EcoScale logic within LEACH)

(Integrates economic, technical, and safety dimensions across formulation + leaching.)

- Economic (30%): materials cost 7, renewables 5, CRMs 0 → 12 PP.
- Technical (35%): Yield 0; T_{xt} 4; Workup 4; Stability 0; Biodegradability 0; Recyclability 5; Selectivity 4; PMI 2.5 → 19.5 PP.
- Safety (35%): Intrinsic 1; Handling 4; Emergency 0; Fate 0; Regulatory 0 → 5 PP.

Total PP = 12 + 19.5 + 5 = 36.5 → Module 3 Score = 100 – 36.5 = 63.5.

¹ A. Jumari, C.S. Yudha, M. Nizam, E.R. Dyartanti, S.A. Purwanto, Open Engineering, 2022, 12, 485–494.