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1. General information

All TH NMR, 3C{*H} NMR and *F{*H} NMR spectra were recorded in CDCl; or D,0O at room
temperature on Bruker spectrometers (400 MHz). Chemical shifts were reported in parts per
million (ppm), and the residual solvent peak was used as an internal reference: proton (CDCl;:
6 7.26, D,0: 6 4.79), carbon (CDCl5: 6 77.10) or tetramethylsilane (TMS: 6 0.00) was used as a
reference. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), g(quartet),
m (multiplet), dd (doublet of doublet). Coupling constants were reported in Hertz (Hz). High-
resolution mass spectra (HRMS) analyses were recorded by ESI-HRMS on a Q-TOF (time-of-
flight) mass spectrometer. Unless otherwise noted, all GC analyses were carried out on a
Shimadzu GC-2014C gas chromatograph using a KB-5 column (30 m x 0.53 mm x 1 um) with
FID detector.

All the substrates and solvents for the synthesis of compounds were purchased from
commercial sources (Aladdin, Bidepharm, Macklin) and used as received without any further
purification.

2. Synthesis of ionic liquids

(o) -
CH5;CN +
R—@—Nme2+ ,“S:OM"—3> R_O_NMea OTf
F3C™ %y 70°C,6h

[TMTFABA]OTf and [PTMA]OTf were synthesized according to the literature procedure.!
To a stirred solution of dimethylaniline (1 mmol, 1 eq.) in CH;CN (1 mL) was added dropwise
methyl trifluoro methane sulfonate (136 pL, 1.2 mmol, 1.2 eq.) at room temperature. The
reaction mixture was then heated to 70 °C and stirred for 6 hours. All operations were
performed in an argon atmosphere. Solvent was then removed in vacuum and the residue
was washed with Et,0. After dried under vacuum, the product was obtained as brown viscous
liquid of [TMTFABA]OTf (849.3 mg, 88%) and white solid of [PTMA]OTf (523.7 mg, 92%).

R Me - cHel, 2 £ =
F,C Me” + Me rt.20h F,C

[TMTFABA]BF, was synthesized according to the literature procedure?. In an argon-
protected 50 mL two-neck flask, 1-[4-(dimethylamino) phenyl]-2,2,2-trifluoroethanone (217.2
mg, 1 mmol, 1 eq), and (CH3);0*BF,~ (147.9 mg, 1 mmol, 1 eq.) were added, followed by 5 mL
of anhydrous dichloroethane. The mixture was stirred at room temperature for 20 hours.
After the reaction, the mixture was evaporated to dryness under reduced pressure and
washed with Et,0 to afford a light yellow solid (239.3 mg, 75%).

anion exchange o

NMe; OTf > NMe; OH
X FsC
o + - o + -
>—©—NMe3 OH + NHTf, ——» >—©—NMe3 NTf, + H,0
FsC FsC

[TMTFABA]NTf, was synthesized via an ion exchange method. [TMTFABA]OTf (381.2 mg,
1 mmol, 1 eq) was passed through an anion exchange resin to yield an aqueous solution of
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[TMTFABA]OH, which was then mixed with an aqueous solution of bis(trifluoromethane-
sulfonyl) imide (309.3 mg, 1.1 mmol, 1.1 eq.). The water was removed by rotary evaporation,
and the resulting solid was washed with 50 mL of Et,0 to obtain a yellow solid (425.1 mg,
83%).

3. Structure characterization data of ionic liquids
Q + -
>—©—NMe3 oTf

[TMTFABA]OTf: Brown viscous liquid; *H NMR (400 MHz, D,0) & 7.92 (s, 4H), 3.66 (s, 9H).
13C{*H} NMR (101 MHz, D,0) 6 147.7, 138.9, 129.4, 122.7 (q, Y£=286.0 Hz), 119.9, 119.7(q,
YJer=316.0 Hz), 92.7(q, ¥cr=32.6 Hz), 57.0. *F{*H} NMR (376 MHz, D,0) & -78.93, -84.31. HRMS
(ESI-MS) my/z calcd for [C;;Hqi3F3NOJ* M*: 232.0944, found: 232.0948; m/z calcd for
[C11H1sFsNO,]* M*: 250.1049, found: 250.1083; m/z calcd for [CF;05S]- M~: 148.9526, found:
148.9540.

+ -
NMe; OTf

[PTMA]OTF: White solid; m.p. 82-83 °C; *H NMR (400 MHz, D,0) § 7.81 (d, J = 8.1 Hz, 2H), 7.72-
7.51 (m, 3H), 3.63 (s, 9H). 13C {!H} NMR (101 MHz, D,0) & 146.5, 130.5, 130.4, 119.7 (q, J =
317.4 Hz), 119.5, 56.9. °F{'H} NMR (376 MHz, D,0) & -78.93. HRMS (ESI-MS) m/z calcd for
[CgH14N]* M*: 136.1121, found: 136.1119; m/z calcd for [CF;05S]" M~ 148.9526, found:
148.9528.

o) .
F3;C

[TMTFABAI]BF,: Light yellow solid; m.p. 109-111 °C; *H NMR (400 MHz, DMSO-dg) 6 7.91 (m,
4H), 3.62 (s, 9H). 3C{'H} NMR (101 MHz, DMSO-ds) & 147.7, 140.5, 129.0, 123.3(q, /=289.9
Hz), 120.1, 92.2 (g, J = 31.1 Hz), 56.4. °F{H} NMR (376 MHz, DMSO-ds) & -82.78, -148.16.
HRMS (ESI-MS) m/z calcd for [Cy;H13F3NO]* M*: 232.0944, found: 232.0940; m/z calcd for
[C11H1sFsNO,]* M*: 250.1049, found: 250.1058; m/z calcd for [BF,]- M~ 87.0035, found:
87.0033.

o} . _
>—©—NMe3 NTf,

[TMTFABA]NTS,: Yellow solid; m.p. 145-146 °C *H NMR (400 MHz, DMSO-dg) 6 8.12 (d, J=9.0
Hz, 2H), 8.06 (d, J = 9.1 Hz, 2H), 3.63 (s, 9H). 13C{1H} NMR (101 MHz, DMSO-d) § 166.2, 149.7,
130.7, 128.9, 120.8,120.0, 119.5(q, J=320.0 Hz) , 56.4. 1°F{'H} NMR (376 MHz, DMSO-d;) & -
78.72,-82.78. HRMS (ESI-MS) m/z calcd for [Cy;H13F3NO]* M*: 232.0944, found: 232.1026; m/z
caled for [Ci1HisFSNO,]* M*: 250.1049, found: 250.1069; m/z calcd for [C,FgNO,S;]” M
279.9178, found: 279.9179.



4. Structure characterization data of cyclic carbonates

o
o4
o

o

4-phenyl-1,3-dioxolan-2-one (4a): Light yellow solid; m.p. 51-53 °C; *H NMR (400 MHz, CDCl,)
6 7.51-7.30 (m, 5H), 5.68 (t, J = 8.0 Hz, 1H), 4.80 (t, J = 8.4 Hz, 1H), 4.34 (t, J = 8.2 Hz, 1H).
13¢{tH} NMR (101 MHz, CDCl5) 6 154.9, 135.9, 129.8, 129.3, 125.9, 78.1, 71.2. HRMS (ESI) m/z
calcd for C4HgO; [M+H]*: 156.0546, found: 156.0539.

o
o4
o)

S

4-(4-methylphenyl)-1,3-dioxolan-2-one (4b): White solid; m.p. 40-41 °C; *H NMR (400 MHz,
CDCl3) 6 7.25 (m, 4H), 5.64 (t, J = 8.0 Hz, 1H), 4.77 (t, J = 8.4 Hz, 1H), 4.33 (t, J = 8.3 Hz, 1H),
2.38 (s, 3H). 3C{*H} NMR (101 MHz, CDCl3) 6 155.0, 140.0, 132.8, 129.9, 126.1, 78.2, 71.2,
21.3. HRMS (ESI) m/z calcd for C1oH1005 [M+Na]*: 201.0522, found: 201.0517.

o
o4
o)

O

4-[1,1'-biphenyl]-4-yl-1,3-dioxolan-2-one (4c): White solid; m.p. 175-176 °C; *H NMR (400
MHz, CDCl3) 6 7.67 (d, J = 8.1 Hz, 2H), 7.59 (d, J = 7.4 Hz, 2H), 7.51-7.35 (m, 5H), 5.72 (t, / = 8.0
Hz, 1H), 4.83 (t, J = 8.4 Hz, 1H), 4.39 (t, J = 8.2 Hz, 1H). 13C{H} NMR (101 MHz, CDCl;) & 154.9,
142.9, 140.1, 134.7, 129.0, 128.0, 128.0, 127.2, 126.5, 78.0, 71.2. HRMS (ESI) m/z calcd for
Ci15H1,03 [M+H]*: 241.0859, found: 241.0862.

o
o«
o

SO

4-(4-chlorophenyl)-1,3-dioxolan-2-one (4d): White solid; m.p. 68-69 °C; 'H NMR (400 MHz,
CDCl;) & 7.45 —7.37 (m, 2H), 7.30 (d, J = 8.5 Hz, 2H), 5.66 (t, J = 8.0 Hz, 1H), 4.80 (t, J = 8.4 Hz,
1H), 4.34 — 4.25 (m, 1H). 3C{*H} NMR (101 MHz, CDCl;) & 154.6, 135.8, 134.3, 129.5, 127.3,
77.4, 71.0. HRMS (ESI) m/z calcd for CgH;05Cl [M+H]*:199.0157, found: 199.0146.
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4-methyl-5-phenyl-1,3-dioxolan-2-one (4e): White solid; m.p. 112-113 °C; *H NMR (400 MHz,
CDCl;) & 7.48-7.39 (m, 3H), 7.39-7.32 (m, 2H), 5.13 (d, J = 8.0 Hz, 1H), 4.60 (dq, J = 7.8, 6.2 Hz,
1H), 1.55 (d, /= 6.2 Hz, 3H). 13C{*H} NMR (101 MHz, CDCl5) 6 154.3, 135.1, 129.8, 129.2, 126.0,
84.9, 80.8, 18.4. HRMS (ESI) m/z calcd for C1oH1005 [M+H]*: 201.0522, found: 201.0522.
0
oA
CeH13

4-hexyl-1,3-dioxolan-2-one (4f): White solid; m.p. 68-69 °C; *H NMR (400 MHz, CDCl;) 6 4.75-
4.63 (m, 1H), 4.51 (t, J = 8.1 Hz, 1H), 4.05 (t, J = 7.8 Hz, 1H), 1.86-1.74 (m, 1H), 1.66 (ddd, J =
14.3,10.4, 5.1 Hz, 1H), 1.52-1.26 (m, 8H), 0.88 (t, J = 6.5 Hz, 3H). 3C{*H} NMR (101 MHz, CDCl;)
& 155.2, 77.1, 69.5, 33.9, 31.6, 28.8, 24.4, 22.5, 14.0. HRMS (ESI) m/z calcd for CoHi503
[M+H]*:173.1172, found:173.1173.

oA
Me)\/0

1,3-dioxolan-2-one (4g): Colorless liquid; *H NMR (400 MHz, CDCl;) 6 4.82 (g, J = 6.7 Hz, 1H),
4.52 (t, J = 8.0 Hz, 1H), 3.99 (t, J = 7.8 Hz, 1H), 1.44 (d, J = 5.7 Hz, 3H). 13C{H} NMR (101 MHz,
CDCl;) 6 155.0, 73.6, 70.6, 19.1. HRMS (ESI) m/z calcd for C,HgO5; [M+H]*:103.0390, found:
103.0389.



5. Optimization of reaction parameters

Table S1 The epoxidation reaction with different solvents?

[TMTFABA]OTf
K,COs

[o]
K€% L A mo
T,1h Ph

Ph” X + H,0,

Entry Solvent Conv.% Yield%
1 CH;CN 98 95
2 MeOH trace trace
3 EA trace trace
4 DMF trace trace
5 t-BuOH trace trace
6 THF NR NR

2Reaction conditions: styrene (114 uL, 1 mmol), [TMTFABA]OTf (19.1 mg, 0.05 mmol), K,CO3 (13.8 mg, 0.1 mmol), 30% H,0, (612 pL, 6 mmol), 80

°C, 1 h, 1 mL solvent. Quantitative analysis was conducted by gas chromatography using biphenyl as an internal standard. NR = No Reaction.

Table S2 Epoxidation reaction under different reaction parameters®

[TMTFABA]OTf
Ph™ X + Ho, — 260 /& + H,0
T1h  pp
Entry T/°C Conv.% Yield%
1 80 98 95
2 r.t. 31 30
3 40 62 60
4 60 86 85
5 100 99 57
6° 80 72 71
7¢ 80 99 77
8d 80 65 63
9 80 85 83
10f 80 35 34
118 80 83 81
120 80 99 86
131 80 99 79

3 Reaction conditions: [TMTFABA]OTf (19.1 mg, 0.05 mmol), K,CO; (13.8 mg, 0.1 mmol), 30% H,0, (612 puL, 6 mmol). Quantitative analysis was
conducted by gas chromatography using biphenyl as an internal standard. ® [TMTFABA]OTf (9.6 mg, 0.025 mmol). ¢ [TMTFABA]OTf (38.1 mg, 0.1



mmol). ¢ K,CO; (6.9 mg, 0.05 mmol). ¢ K,CO5 (27.6 mg, 0.2 mmol).f30% H,0, (204 pL, 2 mmol). 830% H,0, (408 uL, 4 mmol). " 30% H,0, (816 pL, 8
mmol). r.t. = room temperature. | Use TFAP instead of [TMTFABA]OTTf.

6. Synthesis of cyclic carbonate from different olefins and CO,

Table S3 Product selectivity of different olefins®

(0}
(1) catalyst HO OH )J\

K,CO 0
R/\ +H,0, + COZA yAN: >_/ + O o]
(2) KI

A
P
po)
hf

Product selectivity %

Entry Olefins
1 2 3 4 others®
N
1 1 2 6 86 1
1a
O
2 Me 5 2 20 60 2
1b
/@/\
3 Ph 22 4 5 62 n.d.
1c
O
4d Cl 52 1 8 32 3
1d
"
5 1 50 1 40 1
1e
/\
6¢ CehHis 42 1 5 43 2
1f
P
7¢ ~ - n.d. n.d. 9 n.d.
19

2 Reaction conditions: Epoxidation: styrene (114 uL, 1 mmol), 30% H,0, (612 pL, 0.6 mmol), [TMTFABA]OTf (19.1 mg, 0.05 mmol), K,CO; (13.8 mg,
0.1 mmol), KI (16.6 mg, 0.1 mmol), CH5CN (1 mL), 80 °C, 1 h. Cycloaddition: [TMTFABA]OTf (19.1 mg, 0.05 mmol), K,CO3(13.8 mg, 0.1 mmol), KI
(16.6 mg, 0.1 mmol), CHsCN (4 mL), 80 °C, 30 h, P (CO,) =2 MPa. Quantitative analysis was conducted by gas chromatography using biphenyl as an
internal standard. n.d.=not detected ® Other byproducts contain aldehydes, ketones. ¢ Isolated yield ¢ [TMTFABA]OTf (38.2 mg, 0.1 mmol), K,CO3
(27.6 mg, 0.2 mmol). ¢ The pressure of propylene was 0.5 MPa.
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Figure S1 Mass spectra of acetamide and acetic acid from GC-MS.
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Figure S2 Characterization of by-products via GC-MS
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I
I
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c (trace)
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Scheme S1 Formation mechanism of by-products

(a) [TMTFABA]OTf as the catalyst in epoxidation reaction. (b) [TMTFABA]BF, as the catalyst in epoxidation reaction. (c) [TMTFABAINTf, as the
catalyst in epoxidation reaction.

Figure S3 Epoxidation reaction with different catalysts
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7. Mechanistic investigations

Table S4 Control experiments?

(1) catalyst
P K;CO; o W on [
Ph™ X +Hy0,+C0,— 22 »  /\4 >—/ + o o
(2) KI Ph Ph Y/

Product selectivity %

Entry Variation from standard conditions

1 2 3 4 others®
1 none 1 2 6 90 1
2 without K,CO; 96 0 0 0 4
3 without KI 1 84 13 0 2
4 without H,0, >99 0 0 0 0
5 without catalyst 31 5 2 43 19

2 Reaction conditions: Epoxidation: styrene (114 uL, 1 mmol), 30% H,0, (612 pL, 0.6 mmol), [TMTFABA]OTf (19.1 mg, 0.05 mmol), K,COs5 (13.8 mg,
0.1 mmol), KI (16.6 mg, 0.1 mmol), CH5CN (1 mL), 80 °C, 1 h. Cycloaddition: [TMTFABA]OTf (19.1 mg, 0.05 mmol), K,CO3(13.8 mg, 0.1 mmol), KI
(16.6 mg, 0.1 mmol), CHsCN (4 mL), 80 °C, 30 h, P (CO,) =2 MPa. Quantitative analysis was conducted by gas chromatography using biphenyl as an
internal standard. ® Other byproducts contain benzaldehyde, phenylacetaldehyde, acetophenone.

Q +
Fs;C

In D,O

Q +
}—@—NMe;,ow
FsC

+CH;CN+H,0,+K,CO, in D,O )

o} + )
NMe;OTf L
F4C

+CH;CN+H,0,+K,CO; in D,0 (48 h)

P D e S B s e e P LY DA e
Th5 TH0 75 750 A55 0 769 Tr.0 705 7.0 755 {50 b5 =]

Figure S4 'F {'"H} NMR experiments for epoxidation mechanism

Subsequently, we investigated the reaction mechanism, beginning with the epoxidation
mechanism. Based on F{*H} NMR analysis, it was determined that upon the addition of
CH;CN, H,0,, and K,COs, the trifluoro-methane sulfonate anion remained unchanged (signal
a). Most of the cation was converted to intermediate (signal c). After standing at room
temperature for 48 h, the intermediate disappeared, and most of the cation was transformed

into the active species D (signal d).
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Figure S5 HRMS spectrum of the epoxidation reaction intermediate

HRMS (ESI) m/z calcd for [Cy;H;sFsNOs] +:266.0999, found: 266.1068
HRMS (ESI) m/z calcd for [C1;1H1sFsNO,] *: 282.0948, found: 282.0933

Characterization data of B-iodobenzeneethanol intermediate
|

©)V0H

B-iodobenzeneethanol: White solid; m.p. 78-79 °C; *H NMR (400 MHz, CDCl3) & 7.80 — 6.94
(m, 5H), 5.20 (t, J = 7.2 Hz, 1H), 4.09 (dd, J = 12.1, 7.3 Hz, 1H), 3.89 (dd, J = 12.1, 7.1 Hz, 1H),
2.05 (s, 1H). 3C{*H} NMR (101 MHz, CDCl;) 6 140.11, 129.14, 128.75, 128.06, 68.76, 35.89.
HRMS (ESI) m/z calcd for CgHoOl [M+Na]*: 270.9590, found: 270.9593.
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8. DFT-calculated Mulliken charges for [TMTFABA]OTf, [PTMA]OTY{,

TFAP
DFT Calculation method

The computational works were carried out by using the Gaussian 16 (Revision A.03)3.
Geometry optimizations and vibration frequency analysis calculations used DFT
method B3LYP-D3BJ* with 6-31G** basis> for all atoms and the polarized continuum
model using the integral equation formalism variant (IEFPCM)® to model solvent
effects (Acetonitrile). The single point energy and Mulliken charge calculations for the
optimized structures used DFT method M062X-D37 with def2-TZVP basis® for all
atoms and the polarized continuum model using the integral equation formalism variant

(SMD)° to model solvent effects (Acetonitrile).

(a) TFAP (b) [PTMA]OTf (C) [TMTFABA]OTf
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10. NMR and HRMS charts

[TMTFABA]OTF
1H NMR (400 MHz, D,0) spectrum of [TMTFABA]OTf
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19F{1H} NMR (376 MHz, D,0) spectrum of [TMTFABA]OTf
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13C{*H} NMR (101 MHz, D,0) spectrum of [PTMA]OTf
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HRMS (ESI) spectrum of [PTMA]OTf
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[TMTFABA]BF,

1H NMR (400 MHz, DMSO-dg) spectrum of [TMTFABA]BF,
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HRMS (ESI) spectrum of [TMTFABA]BF,
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[TMTFABA]NT,

1H NMR (400 MHz, DMSO-d) spectrum of [TMTFABA] NTf,
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HRMS (ESI) spectrum of [TMTFABA]NTf,
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B-iodobenzeneethanol

1H NMR (400 MHz, CDCl;) spectrum of B-iodobenzeneethanol
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HRMS (ESI) spectrum of B-iodobenzeneethanol
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4-Phenyl-1,3-dioxolan-2-one (4a)

1H NMR (400 MHz, CDCl;) spectrum of 4a
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4-(4-Methylphenyl)-1,3-dioxolan-2-one (4b)
1H NMR (400 MHz, CDCl;) spectrum of 4b

©o o ©O T N ONWL O™ ©
8N © 50 LR ©
~N~ 0nwnwn TS o~
Y - ~C N

| ‘ |
JL MLJ—_JL—__A |
:  § 3 3

- - -

3.

T T T T T T T T T T T
9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 L5 Lo 0.5 0.0 -C

1 (ppm)

B3C{*H} NMR (101 MHz, CDCl;) spectrum of 4b

~ © o

o o ~N@p NNOo®©O® o
< o ofoio i N
0 ® NN BN N O =
- - e ~NN~N~N~ ~
I (AT ~e—

T T T T T T T T T T T T T T T T T T T
200 90 180 170 160 150 110 30 1120 110 100 9 80 70 60 50 ho 30 20 10 0
£1] (ppm)

30



4-[1,1'-Biphenyl]-4-yl-1,3-dioxolan-2-one (4c)

1H NMR (400 MHz, CDCl;) spectrum of 4c
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4-(4-Chlorophenyl)-1,3-dioxolan-2-one (4d)
1H NMR (400 MHz, CDCl;) spectrum of 4d
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4-methyl-5-phenyl-1,3-Dioxolan-2-one (4e)

1H NMR (400 MHz, CD

Cl3)
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4-hexyl-1,3-dioxolan-2-one (4f)

1H NMR (400 MHz, CDCl;) spectr
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1,3-Dioxolan-2-one (4g)
1H NMR (400 MHz, CDCl3) spectrum of 4g
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