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1. Supplementary Experimental section
1.1 Chemicals

Melamine (98%), formaldehyde (37 wt% aqueous solution), toluene (99%), D-(+)-
glucose (99%) and nickel (II) nitrate hexahydrate (99%) were purchased from Tianjin
Kemiou Chemical Reagent Co., Ltd. F127, nitroarenes, N-heterocycles and organic
solvents were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. All
reagents were used as received without further purification.
1.2 Emulsifier preparation

Typically, 24 mL of n-hexanol, 115.5 mL of cyclohexane, 28.5 mL of TX-10, and
5.1 g of deionized water were added to a round-bottomed flask and stirred at room
temperature for 30 min. Then, 9.8138 g of tetraethyl orthosilicate (TEOS) was added
dropwise, and the mixture was stirred for an additional 5 h. Subsequently, 1.5 mL of
aqueous ammonia solution was added, and the reaction mixture was stirred for 18 h.
The reaction was then terminated by adding 15 mL of ethanol. The resultant suspension
was centrifuged, and the precipitate was washed five times with ethanol, followed by
drying at 100 °C for 4 h, obtaining silica nanospheres with diameters in the range of
approximately 60-80 nm. Next, 1.5 g of the as-prepared silica nanospheres was
dispersed in 40 mL of toluene. A mixture containing 4.5 mmol of
trimethoxymethylsilane (MeO);SiCH3 and 4.5 mmol of triethylamine (C,Hs);N was
then added. The reaction mixture was refluxed at 120 °C for 4 h. The solid product was
collected by centrifugation, washed with toluene, and dried under vacuum to yielding

methyl-modified silica particles, which were used as particle emulsifier.



2. Supplementary Figures

Fig. S1. SEM images of 1.3Ni@NHC-500
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Fig. S2. SEM images of 1.3Ni@NHC-700
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Fig. S3. SEM images of 1.3Ni@NHC-800

Fig. S4. SEM images of 4.9Ni@NHC-600



Fig. S5. SEM images of NHC-600



Fig. S6. TEM images of NHC-600 and 1.3Ni@NHC-T. (a) 1.3N1@NHC-500, (b)
1.3Ni@NHC-600, (c) 1.3Ni@NHC-700, (d) 1.3Ni@NHC-800, (¢) NHC-600
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Fig. S7. XRD patterns of NHC-600 and 1.3Ni@NHC-T


mailto:1.3Ni@nhc-t

d=0.202nm

L '2.02 nm
AX

Fig. S8. (a-b) TEM images of 4.9Ni@NHC-600, (c-d) TEM images of 22Ni@NHC-
600
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Fig. S9. XRD patterns of xNi@NHC-600

As shown in Fig. S9, diffraction peaks at 20 = 44.5°, 51.8°, and 76.4° could be
assigned to the (111), (200), and (220) planes of metallic Ni nanocrystal, confirming

the presence of Ni NPs in the 4.9Ni@NHC-600 and 22Ni@NHC-600 catalysts.
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Fig. S10. XPS Ni2p spectra of xNi@NHC-600
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Fig. S11. Quantitative analysis of N species in NHC-600 and 1.3Ni@NHC-T
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Fig. S12. Cls spectra of NHC-600 and 1.3Ni@NHC-T

[lcciico  c=0

= g

C-type ratios(%)

Y]
(=]
T

0 500 500 100 800
wnC8% R 1‘3“\@““6 A R ,“m\@““‘c

Fig. S13. Quantitative analysis of C species in NHC-600 and 1.3Ni@NHC-T
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Fig. S14. Raman spectra of xNi@NHC-600
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Fig. S15. FT-IR spectrum of NHC-600 and 1.3Ni@NHC-T
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Fig. S16. Water contact angles of various catalysts
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Fig. S17. CO,-TPD of NHC-600
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Fig. S18. XPS N1s spectra of xNi@NHC-600
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Fig. S19. Quantitative analysis of N species in xNi@NHC-600
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Fig. S20. (a) N, adsorption-desorption isotherms and (b) pore size distribution curves

of xNi@NHC-600
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Fig. S21. FT-IR spectrum of xNi@NHC-600

FT-IR analysis of xNi@NHC-600 catalysts suggests that no significant changes in
the overall peak pattern, indicating that the content of Ni does not significantly alter the

surface functional group composition.
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Fig. S22. (a) TEM image of 1.3Ni@NHC-600 after 9 cycles, (b) HAADF-TEM image
and corresponding elemental mappings

Fig. S23. SEM images of 1.3Ni@NHC-600 after 9 cycles
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Fig. S24. XRD spectrum of 1.3Ni@NHC-600 after 9 cycles
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Fig. S25. XPS results of 1.3Ni@NHC-600 after 9 cycles. (a) Ni2p spectrum, (b) Nls
spectrum, and (c) percentages of N-species
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Fig. S26. Nitrobenzene (NB) conversions as a function of reaction time over NHC-600

and 1.3Ni@NHC-600
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Fig. S27. Structural evolution of 1,2,3,4-tetrahydroquinoline dehydrogenation and
nitrobenzene hydrogenation on the NHC-600 catalyst
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Fig. S28. Structural evolution of 1,2,3,4-tetrahydroquinoline dehydrogenation and

nitrobenzene hydrogenation on the 1.3Ni@NHC-600 catalyst




3. Supplementary Tables

Table S1. Elemental analysis of various catalysts

N C Ni¢ N C Ni
Catalysts

(Wt%) (Wt%) (Wt%) (at%) (at%) (at%)

NHC-600 8.81 66.86 — 10.15 89.85 —
1.3Ni@NHC-500 11.19 36.84 1.59 20.51 78.79 0.70
1.3Ni@NHC-600 11.71 60.11 1.36 14.25 85.35 0.40
1.3Ni@NHC-700 7.62 62.17 1.30 9.47 90.14 0.39
1.3Ni@NHC-800 5.83 68.66 1.16 6.76 92.92 0.32
4.9Ni@NHC-600 11.16 66.15 4.94 12.47 86.21 1.32
22Ni@NHC-600 11.12 61.17 22.15 12.67 81.30 6.03
1.3Ni@NHC-600° 11.69 60.12 1.33 14.23 85.38 0.39

Results determined by ICP-OES. ? After nine cycles. The atomic ratio of N, C and Ni elements is
calculated from the results of ICP.

Table S2. EXAFS fitting parameters at the Ni K-edge for 1.3Ni@NHC-600 and
4 9Ni@NHC-600

Catalysts Shell N RA)? 2 (A2103) ¢ AEy(eV)? R-factor
L.3Ni@NHC-600 Ni-N/O  3.9+0.2 1.88+0.02 5.1£3.0 -1.4+0.2 0.015
Ni-N/O  2.1£0.2  1.79+0.02 5.6£3.0 -1.9+0.2
4. 9Ni@NHC-600 0.012
Ni-Ni 5.9+0.2 2.46+0.02 6.3£3.0 -2.2+0.2

4N: coordination numbers; “R: bond distance; ‘6?: Debye-Waller factors; YAE,: the inner potential

correction.
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Table S3. Textural properties of various catalysts

Catalysts SgET Pore volume Pore size
(m?/g) (cm’/g) (nm)
NMC-600 320 0.26 13.5
1.3Ni@NMC-500 290 1.09 18.1
1.3Ni@NHC-600 324 0.48 16.3
1.3Ni@NMC-700 328 0.53 16.6
1.3Ni@NMC-800 294 0.45 13.5
4 9Ni@NMC-600 361 0.35 3.6

22Ni@NMC-600 347 0.26 3.9




Table S4. Transfer hydrogenation reaction between nitrobenzene and 1,2,3,4-
tetrahydroquinoline over various catalysts

Entry Solvent Con. of A Con. of B Yield of a Yield of b

(%) (%) (%) (%)
1 Blank <1 <1 — —
2 SiO, <1 <1 _ _
3 NHC-600 73 72 73 72
4 NHC-700 56 57 56 57
5 NHC-800 39 39 39 39
6 NHC-6004 48 51 48 51
7 1.3Ni@NHC-600* 86 86 86 86
8 1.3Ni@NHC-600° 87 88 87 88
9 1.3Ni@NHC-600¢ <1 — — —
10 0.8Ni@NHC-6007 80 80 80 80
11 Ni/NHC-600¢ 74 73 74 73

@ Catalyst pyrolyzed under N, atmosphere.

b The reaction was scaled up 20 times.

¢ The reaction was carried out in water as the solvent, in the absence of 1,2,3,4-tetrahydroquinoline.
4Ni content is determined to be 0.8wt% by ICP analysis.

¢ Catalyst prepared via impregnation with 1.3 wt% Ni content.

Reaction conditions: nitrobenzene (0.5 mmol), 1,2,3,4-tetrahydroquinoline (0.75 mmol), catalyst
(60 mg), H,O (3 mL), 145 °C, 6 h, N,.



Table S5. Performance comparison of reported catalysts in transfer hydrogenation
reaction between nitrobenzene and 1,2,3,4-tetrahydroquinoline

Weat. T Nyg t Aniline  Quinoline
Catalysts ) ] Re TOF? Ref.
(mg) (°C) (mmol) (h) yield (%) yield (%)
1.3Ni@NHC- .
This
600 60 145 0.5 6 90 90 1.250 6.27
) work
(1.3 wt% Ni)
This
NHC-600 60 145 0.5 6 73 72 1.014 —
work
Co/mNC-500
(14.08 20 160 04 24 91 96 0.758 0.35 [1]
wt%Co)
Ni@NCF-700
] 50 145 0.5 18 97 96 0.550 0.065 [2]
(50.13 wt%Ni)
Co-N-C-900
50 145 0.125 24 98 98 0.102 0.532 [3]
(1.12 wt% Co)
ONC,4-800 20 180 04 24 90 91 0.750 — [4]
FBC-850 50 140 0.5 14 94 92 0.671 — [5]

@Reaction activity (R) was calculated based on catalyst amount and nitrobenzene (NB) conversion,
mmolyp/(geat -h)
b TOF was calculated based on the total metal molar amounts in the catalyst and nitrobenzene

conversion, h™!



Table S6. Bond lengths of N-H and Ni-H in TS7 and TS8

Catalysts Bond Bond length (TS7) Bond length (TSS)
NHC-600 N-H 1.05 A 1.25A
Ni-H 248 A 1.67 A
1.3Ni@NHC-600
N-H 1.27 A 1.50 A



mailto:1.3Ni@nhc-600

References

[1] Lu, X.; Qin, J.; Xian, C.; Nie, J.; Li, X.; He, J. Cobalt Nanoparticles Supported on
Microporous Nitrogen-Doped Carbon for Efficient Catalytic Transfer Hydrogenation
Reaction between Nitroarenes and N-Heterocycles. Catal. Sci. Technol., 2022, 12,
5549-5558.

[2] Pang, S.; Zhang, Y.; Su, Q.; Liu, F.; Xie, X.; Duan, Z.; Zhou, F.; Zhang, P.; Wang,
Y. Superhydrophobic Nickel/Carbon Core—Shell Nanocomposites for the Hydrogen
Transfer Reactions of Nitrobenzene and N-Heterocycles. Green Chem. 2020, 22, 1996—
2010.

[3] Xu, D.; Liu, R.; Li, J.; Zhao, H.; Ma, J.; Dong, Z. Atomically Dispersed Co-N, Sites
Anchored on N-Doped Carbon for Aqueous Phase Transfer Hydrogenation between
Nitroarenes and Saturated N-Heterocycles. Appl. Catal. B: Environ. 2021, 299, 120681.

[4] Lu, X.; He, J.; Huang, L.; Qin, J.; Ma, Y.; Liu, X.; Zhao, W.; Liu, B.; Zhang, Z.
Synergetic Roles of Pyridinic Nitrogen and Carbonyl Sites in Nitrogen-Doped Carbon
for the Metal-Free Transfer Hydrogenation Reactions. Appl. Catal. B: Environ. 2023,
324, 122277.

[5] Pang, S.; Xi, X.; Liu, S.; Wang, B.; Liang, J.; Zhang, Y.; Chen, Q.; Su, Q.; Wang,
Y. Superhydrophobic Biochars as Catalysts for Efficient Hydrogen Transfer in N-
heterocycles and Nitrobenzene Reactions. Fuel, 2024, 372, 132224,



4. Supplementary Gas Chromatography and Mass Spectrometry
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3j: 3-Chloroaniline

120

%

127.11

g

-
e

g

[ T T T T N T T T W 1

65.11
92 14 12D.11

&

o

NH,

Cl

3k: 4-Chloroaniline

3

%

127.12

g

-
e

g

9215 12p.10

&

NH,

Cl

U T T (N TN T T T N S T T TN (T S AN N A |

o

31: 2-Fluoroaniline

120

%

1L

g

-
e

g

84.10
64.11 e

ol ..|L .IA ]

&

o

NH,

PO T T TS T N T T T



3m: 3-Fluoroaniline
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3p: 4-Aminobenzonitrile
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8e: 5-Bromoquinoline
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