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. Experimental and Characterization Results
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Scheme S1. lllustration of the preparation of CN/BMO composite.
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Under aerobic photocatalytic conditions, 5-hydroxymethylfurfural (HMF) underwent
selective oxidation to yield 2,5-diformylfuran (DFF) as the product. Reaction mixtures
were analyzed using high-performance liquid chromatography (HPLC; Shimadzu LC-
20AD system equipped with a C18AQ column, 250 x 4.6 mm, 5 ym). As demonstrated
in Figure S1, the chromatographic analysis revealed exclusive detection of HMF and

DFF, with no observable byproducts, confirming the high selectivity of the

transformation.
DFF
=
S
> HMF
‘n
o
I=
I
. T - T L T T »
0 1 2 3 4 5
Time (min)

Figure S1. HPLC analysis of HMF and DFF.
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Figure S2. Standard curve of HMF.
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Figure S3. Standard curve of DFF.
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Figure S4. FT-IR spetra of CN/BMO-1, CN/BMO-2, CN/BMO-4, and CN/BMO-5.
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Figure S5. Pore size distribution plots of CN, BMO, and CN/BMO-3.
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Figure $6. Mott-Schottky curves of CN
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Figure S8. Influence of different wavelengths on photocatalytic oxidation of HMF.



Supporting Information S11/S8S24

- Conversiong e Selectivity g Yieldpep

80 +

60

%

40

20+

ACN ACN+WATER WATER

Figure S9. Influence of different solvents on photocatalytic oxidation of HMF.
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Figure S$10. Active species trapping experiments under anaerobic conditions.
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Figure S11. Influence of the reaction time on photocatalytic oxidation of HMF.
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The hydrogen peroxide (H,O,) production was determined through a standardized
iodometric colorimetric method. To 1 mL of the reaction mixture, we sequentially
added: 1 mL aqueous KIl solution (0.4 M) as the iodide source and 1 mL potassium
hydrogen phthalate buffer (0.1 M, pH = 4.0) to maintain optimal acidic conditions. The
mixed solution was kept in complete darkness for 2 h to ensure complete reaction while
preventing photochemical interference. During this period, H,O, quantitatively oxidizes

iodide to form the triiodide anion (I3”) according to the following stoichiometric equation:

H202 + 3+ 2HY — |3' + 2H20

The resulting I3~ complex exhibits a characteristic absorption band at 350 nm, final

validation of H,O, generation was performed using diffuse reflectance UV-Vis

spectroscopy (DRS).
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Figure $12. (a) UV-Vis spectra of H,O, production. (b) The H,O, production at

different times.
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Figure S$13. In EPR spectra of CN/BMO-3 were recorded in HMF-containing solution

using DMPO as the spin-trapping agent, comparing dark conditions with visible light

irradiation.
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Figure S14. XRD diffraction patterns of CN/BMO-3 before and after the cyclic

reaction.
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Figure $15. The high resolution XPS spectra of (a) survey spectra, (b) C 1s, (c) N 1s,
(d) O 1s, (e) Bi 4f and (f) Mo 3d of CN/BMO-3 after the cyclic reaction.
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Figure $16. The high resolution XPS spectra of (a) N 1s, (b) O 1s, and (c) Bi 4f of
CN/BMO-3 in the dark and light, respectively.
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Figure S$17. Charge density difference of CN/BMO (Orange: electronic accumulation;

Green: electronic depletion).
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Table S1. Conversion of HMF to DFF using CN/BMO-3 catalyst under varied

conditions.
) Conv. Select. Yield.
Entry Catalyst Light Atmosphere
(%) (%) (%)

1 CN/BMO-3 No Air trace - -
2 No 10 W 455 nm Air 24 1 - -
3 CN/BMO-3 10 W 455 nm N, 71.9 30.0 21.6
4 CN/BMO-3 10 W 455 nm Air 92.2 90.8 83.7
5a CN-BMO 10 W 455 nm Air 67.3 78.2 52.7

2 Physical mixing of CN and BMO. Reaction conditions: 10 mM of HMF, 40 mg of

catalyst, 25 °C, 24 h.
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Table S2. Specific surface area, pore volume, and pore size of CN, BMO, and

CN/BMO-3.
Specific surface area Pore volume Pore diameter
Catalyst
(m?g) (cm®/g) (nm)
CN 7.45 0.06 22.43
BMO 32.33 0.16 16.59

CN/BMO-3 4411 0.22 16.87
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Il. Comparison of Reaction Results in Recent Studies

Table S3. Comparative of photocatalytic HMF-to-DFF conversion in recent studies.

Catalyst Reaction conditions HMF (mM) Solvent Conv. (%) Select. (%) Yield. (%) Refs
. 10 W blue LED (A = 455 nm), Air, This
g-C;3;N4/Bi;MoOg¢ 10 ACN 92.2 90.8 83.7
25°C work
UCNT 300 W Xe lamp, Vacuum, 15 °C 10 Water 48.0 95.0 45.6 1
Fluorescent lamp (340—420 nm),
MCN 0.5 Water 50.0 35.0 17.5 2
0,,25°C
Fe(lll)/ Bi;MoOg 500 W Xe lamp, O, 20 Water 32.6 95.3 31.0
Bi,MoOg 300 W Xe lamp, O,, 25 °C 30 ACN 19.0 99.0 18.8 4
NiS,/CdS 300 W Xe lamp, N, 10 Water 54.5 95.2 51.9
. 8 W blue LED
Ni/CdS 5 Water 24.6 100 24.6 6
(A = 440-460 nm), N,
10 W blue LED
CN-WO;@MnO, 0.5 ACN 77.6 79.6 61.8 7
(A =420 nm), O,
20 W blue LED
S-vacancy Znin,S, 5 ACN 96.5 79.9 771 8

(A = 445 £ 10 nm), Air
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(1) Our photocatalytic system employs a low-wattage LED lamp (10 W) instead of conventional high-power xenon lamps (typically 300-500 W),
demonstrating significant energy efficiency advantages while maintaining high catalytic performance.

(2) In contrast to aerobic oxidation systems requiring continuous O, flow, our catalyst achieves complete conversion using only ambient air,
representing a greener approach.

(3) While most high-selectivity catalysts utilized sulfides (which suffer from photo- corrosion-induced deactivation), our system employs carbon
nitride and bismuth molybdate - non-toxic materials with facile preparation.

(4) The ultrasonication-assisted exfoliation during preparation increases the catalyst's specific surface area and pore volume, thereby providing
abundant active sites.

(5) The constructed heterojunction significantly enhances the separation efficiency of photogenerated electron-hole pairs and prolongs charge

carrier lifetime, consequently improving photocatalytic activity.
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