Supplementary Information (SI) for Industrial Chemistry & Materials. This journal is © Institute of Process Engineering of CAS 2025

Supporting Information

Amorphous nanostructured Ni-Fe oxide as notably active and low-cost oxygen evolution reaction electrocatalyst for Anion Exchange Membrane Water Electrolysis

Lorenzo Mirizzi¹, Mohsin Muhyuddin¹, Carmelo Lo Vecchio², Erminia Mosca², Vincenzo Baglio², Irene Gatto², Enrico Berretti³, Alessandro Lavacchi³, Valerio C.A. Ficca⁴, Rosanna Viscardi⁴, *Roberto Nisticò¹, **Carlo Santoro¹

¹ Department of Materials Science, University of Milano-Bicocca, U5, Via R. Cozzi 55, 20125, Milano, Italy

² Institute for Advanced Energy Technologies "Nicola Giordano" CNR-ITAE, Via Salita S. Lucia sopra Contesse 5, 98126 Messina, Italy

³ Istituto di Chimica Dei Composti OrganoMetallici (ICCOM), Consiglio Nazionale Delle Ricerche (CNR), Via Madonna Del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy

⁴ ENEA Casaccia Research Center, Via Anguillarese 301, Rome 00123, Italy

Corresponding authors:

* Roberto Nisticò: email: roberto.nistico@unimib.it

** Carlo Santoro: email: carlo.santoro@unimib.it

Figure S1 – XRF spectra of the synthetized Ni/Fe materials (a) and – Representation of the ratio between the areas of Fe and Ni peaks as a function of the nominal Fe $\%_{mol}$ (b).

Figure S2 – XPS spectra of Fe 2p for Ni_0Fe_1O (green), $Ni_{0.95}Fe_{0.05}O$ (cyan), $Ni_{0.75}Fe_{0.25}O$ (blue), and $Ni_{0.5}Fe_{0.5}O$ (red) ECs.

Figure S3 – XPS spectra of O1s for (a) Ni_1Fe_0O , (b) $Ni_{0.95}Fe_{0.05}O$, (c) $Ni_{0.75}Fe_{0.25}O$, and (d) $Ni_{0.5}Fe_{0.5}O$

Figure S4– EDX Fe atomic ratio in respect to the summed Fe and Ni atomic ratios for all analysed samples.

Figure S5 – Linear Sweep voltammograms of (a,b) Ni_1Fe_0O and (c,d) $Ni_{0.95}Fe_{0.05}O$ at the electrocatalyst loading of (a,c) 0.2 mg cm⁻² and (b,d) 0.6 mg cm⁻².

Figure S6– Linear Sweep voltammograms of (a) Ni_1Fe_0O and (b) $Ni_{0.95}Fe_{0.05}O$. The effect of different electrocatalyst loading (mg cm⁻²) on the OER electrocatalytic activity.

Figure S7 - OER overpotentials of Ni_1Fe_0O measured at 50mA cm⁻² (a) and 100mA cm⁻² (b). OER overpotentials of $Ni_{0.95}Fe_{0.05}O$ measured at 50mA cm⁻² (c) and 100mA cm⁻² (d). The effect of different ink formulations on the OER electrocatalytic activity is reported.

Figure S8 – Most indicative LSVs of the ECs produced in this work

Figure S9 - OER overpotentials of $Ni_{0.95}Fe_{0.05}O$ measured at 50mA cm⁻² (a) and 100mA cm⁻² (b). The effect of different ink formulations on the OER electrocatalytic activity is reported.

Figure S10 – Hardware setup for AEMWE tests with the cold-assembled MEA. a) anode side and b) cathode side view.