Supporting Information

Tuning band gap energy of Cu_xIn_yS for superior photothermocatalytic CO₂ conversion to C₂H₄

Longlong Wang,^{ab} Ruirui Wang,^{*b} Shuang Wei,^b Kexin Li,^b Hasnain Nawaz,^b Bin He,^b Mengyue Li^b and Ruixia Liu^{*abc}

^a Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
^b Beijing Key Laboratory of Solid State Battery and Energy Storage Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing 100190, P. R. China

^c Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, P. R. China

*Corresponding authors:

Email address: wangruirui@ipe.ac.cn (Ruirui Wang), rxliu@ipe.ac.cn (Ruixia Liu)

Supplementary Figures

Fig. S1 Flow chart of reaction device.

Fig. S2 Thermogravimetry graph of TEOA in nitrogen atmosphere.

Fig. S3 Thermogravimetry graph of Cu_xIn_yS in nitrogen atmosphere.

Fig. S4 Evolution of C_2H_4 yield over time for different samples.

Fig. S5 Evolution of CO yield over time for different samples.

Fig. S6 XRD pattern of $CuInS_2$ sample before and after reaction.

Fig. S7 XPS spectra before and after reaction for $CuInS_2$ sample: Cu 2p.

Fig. S8 XPS spectra before and after reaction for $CuInS_2$ sample: In 3d.

Fig. S9 XPS spectra before and after reaction for $CuInS_2$ sample: S 2p.

Fig. S10 UV-Vis absorption spectra of the $Cu_x In_y S$.

Supplementary tables

Element	Atomic percent (%)
Cu	29.44
In	22.25
S	45.96
С	2.35
Total	100.00

Table S1 EDS mapping of the $CuInS_2$ sample.

Table S2 ICP-MS measurement of the $CuInS_2$ sample.

Sample	Quality m (g)	Elements of the	Sample element
	Quanty m ₀ (g)	test	content(W)
CuInS ₂	0.01	Cu	35.40%
	0.01	In	31.30%

Table S3 Decomposition products of TEOA at 130 °C in nitrogen atmosphere.

Sample	C ₂ H ₄ /µmol g ⁻¹ h ⁻¹	CO/µmol g ⁻¹ h ⁻¹
TEOA	-	-

Catalyst	Reaction system	Light source	C ₂ H ₄ production rate (µmol g ⁻ ¹ h ⁻¹)	C ₂ H ₄ sel.%	Ref.
CuInS ₂	CO ₂ +H ₂ O	300 W Xe lamp	45.7	79.7%	This work
CuO _X @p-ZnO	CO ₂ +H ₂ O	300 W Xe lamp	22.3	32%	1
CuGaS ₂	CO ₂ +H ₂	450 W Xe lamp with UV cut-off filter (KG-2 filter and CGA-400 filter)	20.1	77.2%	2
CuInP ₂ S ₆	CO ₂ +H ₂ O	300 W Xe lamp	20.89	56.4%	3
$BPQD - WO_3$	CO ₂ +H ₂ O	300 W Xe lamp	11.0	13.5%	4
WO _{3-X}	CO ₂ +H ₂ O	300 W Xe lamp	1.3	34%	5
Sv-CdS@ZIF-8	CO ₂ +H ₂ O	300 W Xe lamp with a 420 nm cut-off filter	0.8	12.8%	6
CuACS/PCN	CO ₂ +H ₂ O	300 W Xe lamp	10.17	53.2%	7
Co-doped NiS ₂ atomic layers	CO ₂ +H ₂ O	300 W Xe lamp with a AM1.5G filter	2.5	74.3%	8
WOTe	CO ₂ +H ₂ O	300 W Xe lamp	29.5	80%	9

Table S4 Performance comparison of CuInS2 and recently reported photothermal
catalysts for C_2H_4 production

Sample	C ₂ H ₄ /µmol g ⁻¹ h ⁻¹	CO/µmol g ⁻¹ h ⁻¹
CuInS ₂ +TEOA (N ₂)	3.8	2.9
CuInS ₂ +TEOA (CO ₂)	26.2	25.7

Table S5 Photothermal catalytic CO_2 reduction performance in nitrogen and carbondioxide atmospheres at 130 °C

Reference

- 1 W. Wang, C. Deng, S. Xie, Y. Li, W. Zhang, H. Sheng, C. Chen and J. Zhao, Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence Copper(I)/Copper(II), *J. Am. Chem. Soc.*, 2021, **143**, 2984-2993.
- 2 S. Chakraborty, R. Das, M. Riyaz, K. Das, A. K. Singh, D. Bagchi, C. P. Vinod and S. C. Peter, Wurtzite CuGaS₂ with an In-situ-formed CuO layer photocatalyzes CO₂ conversion to ethylene with high selectivity, *Angew. Chem., Int. Ed.*, 2023, **62**, e202216613.
- 3 W. Gao, L. Shi, W. T. Hou, C. Ding, Q. Liu, R. Long, H. Q. Chi, Y. C. Zhang, X. Y. Xu, X. Y. Ma, Z. Tang, Y. Yang, X. Y. Wang, Q. Shen, Y. J. Xiong, J. L. Wang, Z. G. Zou and Y. Zhou, Tandem synergistic effect of Cu-In dual sites confined on the edge of monolayer CuInP₂S₆ toward selective photoreduction of CO₂ into multi-carbon solar fuels, *Angew. Chem., Int. Ed.*, 2024, **63**, e202317852.
- 4 W. Gao, X. Bai, Y. Gao, J. Liu, H. He, Y. Yang, Q. Han, X. Wang, X. Wu, J. Wang, F. Fan, Y. Zhou, C. Li and Z. Zou, Anchoring of black phosphorus quantum dots onto WO₃ nanowires to boost photocatalytic CO₂ conversion into solar fuels, *Chem. Commun.*, 2020, 56, 7777-7780.
- 5 Y. Deng, J. Li, R. Zhang, C. Han, Y. Chen, Y. Zhou, W. Liu, P. K. Wong and L. Ye, Solarenergy-driven photothermal catalytic C-C coupling from CO₂ reduction over WO^{3–}, *Chin. J. Catal.*, 2022, 43, 1230-1237.
- 6 F. Tian, H. Zhang, S. Liu, T. Wu, J. Yu, D. Wang, X. Jin and C. Peng, Visible-light-driven CO₂ reduction to ethylene on CdS: Enabled by structural relaxation-induced intermediate dimerization and enhanced by ZIF-8 coating, *Appl. Catal.*, *B*, 2021, 285, 119834.
- 7 W. Xie, K. Li, X. H. Liu, X. Zhang and H. Huang, P-mediated Cu-N₄ sites in carbon nitride realizing CO₂ photoreduction to C₂H₄ with selectivity modulation, *Adv. Mater.*, 2023, 35, e2208132.
- 8 W. Shao, X. Li, J. Zhu, X. Zu, L. Liang, J. Hu, Y. Pan, J. Zhu, W. Yan, Y. Sun and Y. Xie, Metalⁿ⁺-Metal^{δ+} pair sites steer C-C coupling for selective CO₂ photoreduction to C₂ hydrocarbons, *Nano Research*, 2021, **15**, 1882-1891.
- 9 X. Zhang, Y. Yang, Y. Hu, L. Xiong, T. Wang, P. Li and J. Shen, Photothermal catalytic C-C coupling to ethylene from CO₂ with high efficiency by synergistic cooperation of oxygen vacancy and half-metallic WTe₂, *J. Energy Chem.*, 2024, **93**, 547-556.