Supplementary Information

Title: Improved CO₂ capture performance of CeO₂-doped CaO-based pellets: effects of particle size and steam treatment

Author: Yong Li^a, Wuhao Sun^a, Xilei Liu^a, Jian Chen^{a, *}, Hedan Tang^a, Youshi Li^a, Mingdi Li^a, Lunbo Duan^{b, *}

^a School of Automotive Engineering, Changshu Institute of Technology, Changshu 215500, China

^b Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China *Email: chenjian@cslg.edu.cn; duanlunbo@seu.edu.cn

Results and discussion

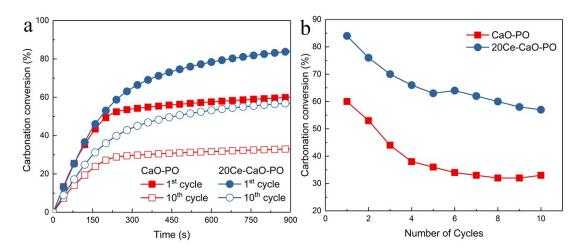

Figure S1 CO₂ capture performance of CaO-PO and 20Ce-CaO-PO over ten cycles in a vertical fixed bed reactor.

Figure S2 XRD patterns of 20Ce-CaO-PE-4 after steam hydration at different temperatures.

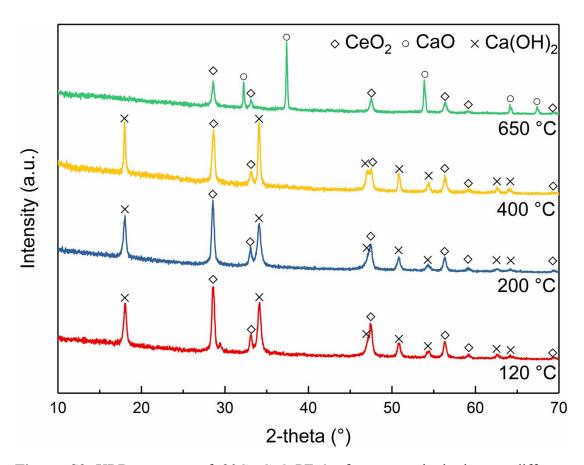

Table S1 N₂ physisorption results of fresh CeO₂-doped CaO-based pellets.

Table S2 Carbonation performance of the CaO-based pellets prepared in this study and those reported previously.

Results and discussion

Figure S1 CO₂ capture performance of CaO-PO and 20Ce-CaO-PO over ten cycles in a vertical fixed bed reactor. (a) Carbonation conversion as a function of cycle number, (b) carbonation conversion as a function of time. CeO₂ doping significantly improved CO₂ sorption rate. Reaction condition: calcination: N₂, 850 °C, 10 min; carbonation: 15% CO₂, 85% N₂, 650 °C, 15 min.

Figure S2 XRD patterns of 20Ce-CaO-PE-4 after steam hydration at different temperatures.

Table S1 N₂ physisorption results of fresh CeO₂-doped CaO-based pellets.

Sample	Specific surface area (m ² /g)	Pore volume (cm ³ /g)	
20Ce-CaO-PO	9.7	0.016	
20Ce-CaO-PE-1	6.4	0.011	
20Ce-CaO-PE-2	6.4	0.011	
20Ce-CaO-PE-3	6.3	0.011	
Fresh 20Ce-CaO-PE-4	6.1	0.010	

Table S2 Carbonation performance of the CaO-based pellets prepared in this study and those reported previously.

Testing condition		Carbonation			
		Cycles	conversion (%)		Ref.
Calcination	Carbonation	_	Initial	Final	_
N ₂ , 850 °C, 5 min	15% CO ₂ , 85% N ₂ , 650 °C,	25	72	20	1
	25 min				
N ₂ , 850 °C, 10 min	15% CO ₂ , 85% N ₂ , 650 °C,	17	51.9	30.2	2
	20 min				
N ₂ , 900 °C, 10 min	15% CO ₂ , 85% N ₂ , 650 °C,	17	76	21	3
	30 min				
N ₂ , 850 °C, 10 min	CO ₂ , 850 °C, 10 min	30	45	30	4
40% CO ₂ , 60% N ₂ , 900 °C,	15% CO ₂ , 85% N ₂ , 650 °C,	25	68	29	5
5 min	30 min				5
steam, 850 °C, 10 min	15% CO ₂ , 85% N ₂ , 650 °C,	20	75.1	29.9	In this
	15 min				work

References:

- 1. Y. Zhang, X. Gong, X. Chen, L. Yin, J. Zhang and W. Liu, Performance of synthetic CaO-based sorbent pellets for CO₂ capture and kinetic analysis, *Fuel*, 2018, **232**, 205-214.
- 2. K. Ma, J. Sun, P. Kong, R. Sun, K. Li, Z. Zhou and C. Zhao, Core-shell structured CaO-based pellets with enhanced cyclic CO₂ capture performance, *Journal of Environmental Chemical Engineering*, 2024, **12**, 113033.
- J. Sun, W. Liu, Y. Hu, M. Li, X. Yang, Y. Zhang and M. Xu, Structurally Improved, Core-in-Shell, CaO-Based Sorbent Pellets for CO₂ Capture, *Energy* & Fuels, 2015, 29, 6636-6644.
- 4. V. Manovic and E. J. Anthony, CaO-based pellets supported by calcium aluminate cements for high-temperature CO₂ capture, *Environmental Science & Technology*, 2009, **43**, 7117-7122.
- J. Sun, C. Liang, W. Wang and W. Liu, Screening of Naturally Al/Si-Based Mineral Binders to Modify CaO-Based Pellets for CO₂ Capture, *Energy & Fuels*, 2017, 31, 14070-14078.