Supplementary Information for

Deactivation Mechanisms of Cu-Zn-Al₂O₃ in CO₂ Hydrogenation

Induced by SO₂ Exposure

Xuan Bie^a, Ruoyu Wu^a, Bocheng Yu^a, Xuelong Quan^a, Shiyu Zhang^a, Qinghai Li^{a,b}, Yanguo Zhang^{a,b}, Hui Zhou^{a,b,*}

*Corresponding author. Email: <u>huizhou@tsinghua.edu.cn</u>

Affiliations ¹Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO₂ Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P.R. China.

²Shanxi Research Institute for Clean Energy, Tsinghua University, Shanxi, Taiyuan 030000, P.R. China.

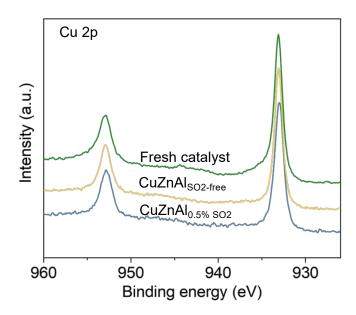


Fig. S1. XPS spectra of Cu 2p of fresh and used Cu-ZnO-Al_2O_3 catalysts.

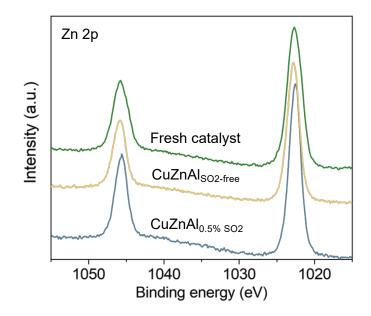


Fig. S2. XPS spectra of Zn 2p of fresh and used Cu-ZnO-Al_2O_3 catalysts.

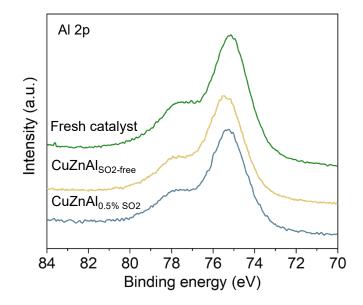
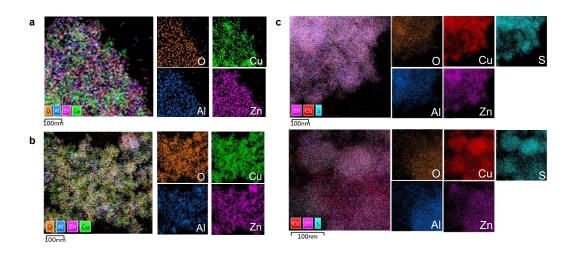



Fig. S3. XPS spectra of Al 2p of fresh and used Cu-ZnO-Al_2O_3 catalysts.

Fig. S4. STEM analysis and EDX mapping of Cu-ZnO-Al_2O_3.

(a) Fresh catalyst. (b) The used catalyst exposed to $H_2/CO_2/N_2$ (1:1:1) for 400 min at 500 °C. (c) The used catalyst exposed to $H_2/CO_2/N_2$ (1:1:1) with 0.5% SO₂ for 400 min at 500 °C.

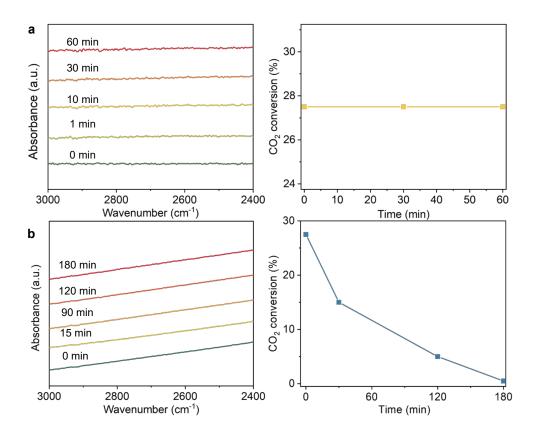
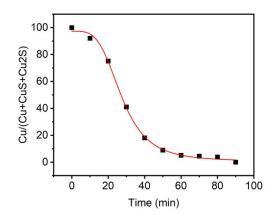



Fig. S5. Evolution of the surface functional groups over Cu-ZnO-Al $_2O_3$ with TOS.

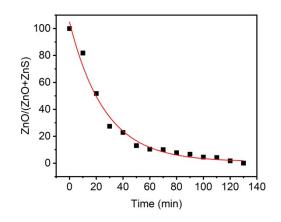
The catalyst was first exposed to (a) $CO_2/H_2/N_2$ (1:1:1) for 60 min, followed by (b) switching the gas flow to $CO_2/H_2/N_2$ (1:1:1) with 0.5% SO₂. CO_2 conversion during the TOS of 180 min detected by gas analyzer. No CH_4 formation was detected. Reaction conditions: 500 °C, 1 bar, gas flow rate of 30 mL min⁻¹.

Fig. S6 Experimental data and fit of metallic Cu phase disappearance kinetics

The normalized phase fraction evolution of Cu (derived from XRD peak area) was fitted using a power-law logistic function:

$$X(t) = 0.64 + 96.68 / (1 + (\frac{t}{27.3})^{3.8})$$

where:


X₀=0.64 represents the residual Cu fraction at equilibrium (unreacted Cu or background signal),

A=96.68 is the maximum amplitude of the reaction (total convertible Cu),

 τ =27.3 min is the characteristic time for 50% conversion,

n=3.8 is the growth exponent reflecting the reaction mechanism.

Model validation demonstrates excellent agreement with experimental XRD trends (R^2 =0.978). The kinetic analysis of copper sulfidation reveals a diffusion-controlled nucleation-growth mechanism, characterized by a time constant τ =27.3 min, indicating that 50% of Cu converts to CuS/Cu₂S within ~27 min. The growth exponent n=3.8 aligns with 3D diffusion-limited Avrami-like kinetics (theoretical n=3-4), supporting a three-stage mechanism.

Fig. S7 Experimental data and fit of ZnO phase disappearance kinetics

The normalized residual ZnO fraction X(t), derived from XRD peak area integration, was fitted using a singleexponential decay model with a baseline offset:

$$X(t) = 103.8e^{-\frac{t}{26.3}} + 1.08$$

where:

A=103.8 represents the initial ZnO content,

 τ =26.3 min is the characteristic time constant,

B=1.08 accounts for residual unreacted ZnO or instrumental background.

Model validation confirms the single-exponential decay model's superiority ($R^2=0.983$). The sulfidation kinetics of ZnO follows a first-order process with a rate constant k=0.038 min⁻¹ and a half-life t_{1/2}≈18.2 min, indicating rapid consumption of 50% ZnO within 18 min. A small residual fraction (~1%, B=1.08) persists due to kinetic limitations, likely from ZnS passivation layers blocking further sulfur diffusion. Mechanistically, the reaction proceeds via two distinct phases:

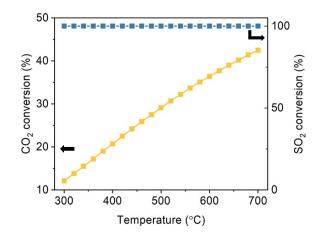


Fig. S8. Thermodynamic equilibrium calculation. (500°C, 0.5% SO₂, H₂/CO₂=1:1), SO₂ is converted to H₂S.

Fig. S9. Gibbs free energies of the reaction: $SO_2(g) + 3H_2(g) \rightarrow H_2S(g) + 2H_2O(g)$.

Table S1. XPS fitting parameters of	Cu LMM for fre	esh and use	d catalysts.
-------------------------------------	----------------	-------------	--------------

			-		
Material	State	Cu LMM B.E. (eV)	FWHM (eV)	²L/G Mix (%)	Amount (%)
Fresh catalyst	Cu+	570.3		30	0
	Cu ⁰	568.4	1.5	30	100
CuZnAl _{so2-free}	Cu+	570.3	1.3	30	18
	Cu ⁰	568.4	1.4	30	82
CuZnAl _{0.5% SO2}	Cu+	570.3	1.8	30	58
	Cu ⁰	568.4	1.7	30	42

^a L/G: Lorentzian/Gaussian line shape.

Material	State	Zn LMM (eV)	FWHM (eV)	²L/G Mix (%)	Amount (%)
resh catalyst	Zn ^{δ+}	496.0	3.5	30	37
	Zn ²⁺	499.5	3.5	30	63
CuZnAl _{SO2-free}	Zn ^{δ+}	496.0	3.4	30	37
	Zn ²⁺	499.5	3.5	30	63
CuZnAl _{0.5% SO2}	Znδ+	496.0	3.5	30	33
	Zn ²⁺	499.5	3.5	30	67

^a L/G: Lorentzian/Gaussian line shape.

	Cu (mg g ⁻¹)	Zn (mg g ⁻¹)	Al (mg g ⁻¹)	Cu loading (wt.%)	ZnO loading (wt.%)	Al ₂ O ₃ loading (wt.%)	S (mg g ⁻¹)
Before reaction	461.9	182.4	49.1	59.1	29.0	11.9	-
CuZnAl _{s02-free}	468.3	175.2	50.2	59.8	28.2	11.9	-
CuZnAI _{0.5% SO2}	471.2	178.3	49.5	-	-	-	335.3

Note S1:

Theoretical sulfur content for complete conversion of $Cu \rightarrow Cu_2S$ and $ZnO \rightarrow ZnS$ was calculated as follows:

- 1. Mass balance:
 - 1) Initial Cu: 591 mg/g⁻¹ \rightarrow Moles of Cu = 591 mg / 63.55 g mol⁻¹ = 9.30 mmol g⁻¹
 - 2) Initial ZnO: 290 mg g⁻¹ \rightarrow Moles of Zn = (290 mg × 65.38/81.38) / 65.38 g mol⁻¹ = 3.56 mmol g⁻¹

2. Sulfur stoichiometry:

- 1) Cu_2S requires 4.65 mmol S g⁻¹ (9.30 mmol Cu × 1 mol S / 2 mol Cu).
- 2) ZnS requires 3.56 mmol S g^{-1} .
- 3) Total S = 4.65 + 3.56 = 8.21 mmol S $g^{-1} \rightarrow 263$ mg S g^{-1} (26.3 wt%).

If Cu was fully converted to CuS, theoretical sulfur content for complete conversion of Cu \rightarrow CuS and ZnO \rightarrow ZnS was calculated as follows:

- 3. Sulfur stoichiometry:
 - 4) CuS requires 9.30 mmol S g^{-1} (9.30 mmol Cu × 1 mol S / 1 mol Cu).
 - 5) ZnS requires 3.56 mmol S g^{-1} .
 - 6) Total S = 9.30 + 3.56 = 12.86 mmol S $g^{-1} \rightarrow$ 412.3 mg S g^{-1} (41.2 wt%).