Supplementary Information

Continuous direct air capture and conversion tandem system applicable to a wide range of CO₂ concentrations

Shinta Miyazaki^a, Akihiko Anzai^{a,*}, Masaki Yoshihara^a, Hsu Sheng Feng^a, Shinya Mine^b, Takashi Toyao^a, Ken-ichi Shimizu^{a,*}

^a Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan

^b Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1, Nigatake, Miyagino-ku, Sendai 983-8551, Japan

*Corresponding author Akihiko Anzai, E-mail: anzai.akihiko@cat.hokudai.ac.jp Ken-ichi Shimizu, Email: kshimizu@cat.hokudai.ac.jp

Supplementary Figures and Texts 1 Introduction

Fig. S1 a. Schematic diagram of the continuous CO_2 capture and methanation system; captured gas (100 mL/min, 10% CO_2 +10% O_2 /He for 30 min) and hydrogenation gas (100 mL/min, pure H₂ for 30 min) were alternately fed into each reactor containing 10 g of Ni-Ca/Al₂O₃ **b**. Typical time course of the CH₄, CO₂, and CO concentration in effluent 1 and 2, respectively. **c**. Variation in CH₄ yield with DFM amount in continuous CO₂ capture and methanation.

<u>Text S1</u>

Previously, various DFMs for selective CH₄ production were reported. Especially, Ni-Ca based DFMs were wellknown as high performance one (Table S1 and S2). Recently, our group developed Ni-Ca/Al₂O₃ DFM, which optimized Ni and Ca loading. Detail characterization revealed that 500 °C is the best condition for CO₂ capture and methanation. For continuous CH₄ production from high concentration of CO₂, we carried out CO₂ capture and methanation using the continuous CCR system (Fig. S1a). First, the CO₂/O₂ mixture was fed into one reactor for 30 min for CO₂ capture. On the other hand, pure H₂ was fed into the other reactor (containing a CO₂-captured Ni-Ca/Al₂O₃). Fig. S1b shows the typical time course of the CH₄, and CO₂ concentrations analyzed by online gas-cell IR in effluent 1 and 2, respectively. Fig. S1c shows the result of the optimization of Ni-Ca/Al₂O₃ amount. These results indicate that increasing the amount of DFM has limited effects on improving CH₄ yield (<20%).

The conventional stepwise CCR system illustrated in Fig. 1a was originally developed by Farrauto's group, who pioneered the concept[†]. They successfully demonstrated the capture of CO₂ from emission sources and its subsequent conversion to CH₄ within a single reactor at the same temperature (320 °C), using Ru and nanodispersed CaO co-supported on porous γ -Al₂O₃. Around the same period, Urakawa's group demonstrated CO₂ capture and subsequent hydrogenation to CO using a DFM composed of earth-abundant elements (FeCrCu/K/MgO–Al₂O₃) [‡]. Furthermore, they proposed a continuous operation concept, illustrated in Fig. 1b, in which CO₂ can be continuously removed from the effluent stream and converted into valuable products (such as syngas) by synchronizing the switching of gas flow directions between two reactors with an appropriate time delay. Following these pioneering studies, our group demonstrated continuous CCR to CO using a dual-functional material composed of Pt nanoparticles coordinated with Na oxides on Al₂O₃, integrated within a reactor configuration similar to that shown in Fig. 1b[¶]. Our previous study demonstrated a groundbreaking CCR process that promotes CO₂ capture and reduction at significantly lower temperatures compared to conventional systems. However, it had a limitation in effectively capturing high concentrations of CO₂, such as those found in simulated exhaust gas. To address this issue, we developed a new process configuration, as shown in Fig. 1c, by integrating a TSA system capable of capturing large amounts of CO₂.

† M. Duyar, M. Treviño, R. Farrauto, Appl. Catal. B:, 2015, 168-169, 370-376

‡ L. Bobadilla, J. Riesco-García, G. Penelás-Pérez, A. Urakawa, J. CO2 Util., 2016, 14, 106-111

¶ S. Miyazaki, L. Li, S. Yasumura, K. Ting, T. Toyao, Z. Maeno, K. Shimizu, ACS Catal., 2022, 12, 2639–2650

2 Results and Discussion

2.1 Screening and optimization of sorbents and catalysts

Fig. S2 Illustration of the experimental setup for CO₂ adsorption measurement.

Fig. S3 Profile of the breakthrough experiments over H-beta and Rb-beta under a flow of $1\% \text{ CO}_2$ at 50 °C, total flow rate = 100 mL/min, He balance. Weight of adsorbents: 100 mg. The feed gases were introduced to the adsorbents from 0 s.

Fig. S4 XRD patterns of H-beta, Rb-beta, Na-beta, K-beta, and Cs-beta.

Fig. S5 Schematic view of the setup used for *operando* IR measurement, including *in situ* IR cell and IR gas cell. The inner diameter and length of the cell are provided with a unit of mm.

Fig. S6 a. Validation in CO₂ conversion with respect to temperature for different amounts of Cu/ZnO/Al₂O₃. **b**, Variation in CO₂ conversion and CO selectivity with catalyst amount in steady-state RWGS reaction over Cu/ZnO/Al₂O₃.

Fig. S7 Schematic diagram and procedure of the continuous CO₂ capture and O₂-free CO₂ production.

Fig. S8 Typical time course of the O_2 concentration in effluent 1 during continuous CO_2 capture and O_2 -free CO_2 production.

Fig. S9 Effluent concentration profiles of CO₂ for blank during continuous CO₂ capture and O₂-free CO₂ production, methanation and. RWGS reaction side production; captured gas (100 mL min⁻¹, 10%CO₂+10%O₂/He for 29.5 min and then pure He for 0.5 min) and other side gas (120 mL min⁻¹, pure He for 30 min).

In continuous CO₂ capture and O₂-free CO₂ production, the total flow rate was moderately changed due to O₂-free CO₂ production. The total flow rate in effluent 2 can be shown eq. 1. The produced O₂-free CO₂ flow rate can be calculated in eq. 2. Finally, eq. 3 to derive the total flow rate was calculated from eqs. 1 and 2. The derived total flow rate is close to the measured total flow rate by the soap-film flow meter (HORIBA, Ltd., Fluid Control System SF-1U combined VP-3U, Fig. S7). From eqs. 2 and 6, the amount of produced O₂-free CO₂ every 0.5 min was derived and O₂-free CO₂ yield was also calculated (O₂-free CO₂ yield = 97%, Fig. S7).

$$F_{all}^{out(2)} = F_{CO2}^{out(2)} + F_{He}^{out(2)}$$
(1)

$$F_{co2}^{out(2)} = C_{co2}^{out(2)} \times F_{cu}^{out(2)}$$
(2)

$$F_{all}^{out(2)} = \frac{F_{He}^{out(2)}}{1 - C_{CO2}^{out(2)}}$$
(3)

Effluent 2 (O_2 -free CO_2 production side)

Fig. S10 Comparison of changes about measured total flow rate and derived total flow rate from outlet gas concentration in effluent 2 during CO_2 capture and O_2 -free CO_2 production. Conditions are the same as in Fig. 5. The methodology of total flow rate derivation from outlet gas concentration in effluent 2 is shown in Supplementary Text 1.

Fig. S11 Time course of amount of captured CO_2 in effluent 1, O_2 -free CO_2 production in effluent 2 every 0.5 min, and total flow rate of effluent 2 for continuous CO_2 capture and RWGS reaction. Conditions are the same as in Fig. 5.

Fig. S12 Transitions of the CO₂ capture efficiency and O₂-free CO₂ yield during cyclic test of continuous CO₂ capture and O₂-free CO₂ production. Conditions are the same as in Fig. 5.

2.3 Continuous CO₂ capture and methanation/RWGS reaction using the tandem system

Fig. S13 Schematic diagram and procedure of the continuous CO₂ capture and methanation as well as RWGS reaction.

<u>Text S4</u>

In continuous high-concentration CO₂ capture and methanation, total flow rate was drastically changed due to large amount of CH₄ formation. The total flow rate in effluent 2 can be shown eq. 1, because of produced CO and unreacted CO₂ are hardly observed, and produced H₂O was captured by the cold trap. From the stochiometric equation of methanation (eq. 3 in Main Text), produced CH₄ and unreacted H₂ flow rates can be shown eqs. 2 and 3, respectively. amount of converted H₂ can be calculated by eq. 4 and eq. 4 can transformed to eq. 5 using eq. 2. Finally, eq. 6 to derive the total flow rate was calculated from eqs. 4 and 5. The derived total flow rate is close to the measured total flow rate by the soap-film flow meter (HORIBA, Ltd., Fluid Control System SF-1U combined VP-3U). From eqs. 2 and 6, the amount of produced CH₄ every 0.5 min was derived and CH₄ yield was also calculated (CH₄ yield = 92%, Fig. S10).

$F_{all}^{out(2)} = F_{CH4}^{out} + F_{H2}^{out}$	(1)
$F_{CH4}^{out} = C_{CH4}^{out} \times F_{all}^{out(2)}$	(2)
$F_{H2}^{out} = (1 - C_{CH4}^{out}) \times F_{all}^{out(2)}$	(3)
$F_{H2}^{in} - F_{H2}^{out} = 4 \times F_{CH4}^{out}$	(4)
$F_{H2}^{in} - F_{H2}^{out} = 4 \times C_{CH4}^{out} \times F_{all}^{out(2)}$	(5)
$F_{all}^{out} = \frac{F_{H_2}^{in}}{1+3C_{CH_4}^{out}}$	(6)

Fig. S14 Comparison of changes about measured total flow rate and derived total flow rate from outlet gas concentration in effluent 2 during CO₂ capture and methanation. Conditions are the same as in Fig. 5. The methodology of total flow rate derivation from outlet gas concentration in effluent 2 is shown in Supplementary Text 3.

Fig. S15 Time course of amount of captured CO_2 in effluent 1, CH_4 production in effluent 2 every 0.5 min, and total flow rate of effluent 2 for continuous CO_2 capture and methanation. Conditions are the same as in Fig. 5.

Fig. S16 Transitions of the CO_2 capture efficiency and CH_4 yield during cyclic test of continuous CO_2 capture and RWGS reaction. Conditions are the same as in Fig. 5.

Fig. S17 Variation in CO₂ capture efficiency and CH₄ yield with range of temperature changing (minimum range from 40 °C to 120 °C) in continuous CO₂ capture and CH₄ production.

Fig. S18 Variation in CH₄ yield and CH₄ production rate with catalyst amount in continuous CO₂ capture and CH₄ production.

Fig. S19 Typical time course of uncaptured CO₂ in effluent 1 and CH₄, CO, and unreacted CO₂ in effluent 2 for continuous CO₂ capture and methanation under process-relevant conditions (without He purge). Conditions: 14 g of Rb-beta for each upper reactor, temperature swing from 40 °C to 200 °C (heating rate = 5.5 °C/min). 15 g of Ni/CeO₂ for the bottom reactor, 300 °C. 100 mL/min 10% CO₂+10% O₂/He for 30 min, switched to 120 mL/min H₂ for another 30 min.

Fig. S20 (a) Schematic diagram of the two-reactor TSA system for continuous CO_2 capture and RWGS reaction; captured gas (100 mL/min, $10\%CO_2+10\%O_2/He$ for 29.5 min and then pure He for 0.5 min) and hydrogenation gas (100 mL/min, pure H₂ for 30 min) were alternately fed into each reactor containing 14 g of Rb-beta (b and d) Typical time course of the CO_2 and O_2 concentration in effluent 1 and 2, respectively. (c and e) Typical time course of the temperature changing in reactor a and b, respectively.

In continuous high-concentration CO_2 capture and RWGS reaction, total flow rate was slightly changed due to CO formation and CO_2 desorption. Using the soap-film flow meter, total flow rate in effluent 2 was measured and the amount of produced CO every 0.5 min was derived, and CO yield was also calculated (CO yield = 85%, Fig. S18).

Fig. S21 Time course of amount of captured CO_2 in effluent 1, CO production in effluent 2 every 0.5 min, and total flow rate of effluent 2 for continuous CO_2 capture and RWGS reaction. Conditions are the same as in Fig. S17.

Fig. S22 Transitions of the CO_2 capture efficiency and CO yield during the cyclic test of continuous CO_2 capture and RWGS reaction. Conditions are the same as in Fig. S17.

Fig. S23 Variation in CO yield and STY_{CO} with catalyst amount in continuous CO₂ capture and RWGS Reaction.

 H_2 conversion is also an important property in the CO₂ methanation process. We demonstrated continuous CO₂ capture and methanation, with the H₂ flow time of H₂ reduced from 30 min to 20 min. Similar to Fig. 6, 10% CO₂ + 10% O₂ was fed into one reactor for 29.5 min for CO₂ capture with cooling, and then pure He (0.5 min) was fed to purge the remaining O₂ in the reactor and gas line (Fig. S24a). At the same time, into the other reactor in parallel, pure H₂ was fed at 20 min after 10 min of no gas flow with heating. CO₂ capture efficiency and CH₄ yield were maintained during 4 cycles at 99% and 93%, respectively (Fig. S24e). The effect of H₂ flow time was investigated and H₂ conversion and the average CH₄ concentration were increased from 38% to 58%, and from 9.8% to 15%, respectively.

Fig. S24 Continuous CO₂ capture and methanation; captured gas (100 mL min⁻¹, 10% CO₂+10%O₂/He for 29.5 min and then pure He for 0.5 min) and hydrogenation gas (100 mL min⁻¹, pure H₂ for 20 min) were alternately fed into each reactor containing 14 g of Rb-beta. (a and c) Typical time course of the CH₄, CO₂, and CO concentration in effluent 1 and 2, respectively. (b and d) Typical time course of the temperature changing in reactor a and b, respectively. (e) Transitions of the CO₂ capture efficiency and CH₄ yield during cyclic test. (f) Comparison of H₂ conversion and average CH₄ concentration in 1 cycle between conditions of Fig. 6 (denoted as process 1) and conditions of Fig. S24 (denoted as process 2).

2.4 Continuous direct air capture and methanation

Fig. S25 Typical time course of uncaptured CO₂ in effluent 1 and CH₄, CO, and unreacted CO₂ in effluent 2 for continuous high-concentration CO₂ capture and methanation. Conditions: 14 g of Rb-beta for each upper reactor, temperature swing from 80 °C to 100 °C (heating rate = 20 °C/min). 15 g of Ni/CeO₂ for the bottom reactor, 300 °C. 500 mL/min air for 5 min, switched to 10 mL min⁻¹ H₂ for another 5 min.

2.5 Energy efficiency

<u>Text S7</u>

The energy efficiency (denoted as η) was defined as the ratio between the outlet energy based on the low heating value (LHV) of CH₄ and the overall energy. For example, Andrew et al. evaluated the η of CO₂ methanation under both pseudo-adiabatic and adiabatic configurations, and demonstrated that the adiabatic configuration significantly enhances the overall efficiency of the methanation process[†]. While the definition of η excludes the contribution of the LHV of unreacted H₂, it serves as a reliable metric for evaluating and comparing the efficiency of CO₂ conversion. In contrast, the fuel production efficiency (FPE) is defined as the ratio of the total output energy to the total input energy. Both input and output energies were calculated based on the LHV and the applied electrical power (P). Murphy et al. demonstrated a linear correlation between the flow rate–normalized input energy and the fuel production efficiency (FPE)[‡], highlighting the utility of FPE as an indicator of how effectively CO₂ and H₂ are jointly converted into higher-value energy outputs.

† M. Biset-Peiróa, R. Meyb, J. Guileraa, and T. Andreua, *Chem. Eng. J.* 2020, **393**, 124786
‡ S. Ullah, Y. Gao, L. Dou, Y. Liu, T. Shao, Y. Yang and A. B. Murphy, *Plasma Chemistry and Plasma Processing*, 2023, **43**, 1335–1383.

Tables

2 Results and Discussion

Table S1. Summary of the continuous CO_2 capture and methanation in this study and other reported CO_2 capture and methanation considering the effect of coexistent O_2 . Entries without *, †, or ‡ symbols using Fig. 1a system.

DFMs or catalyst	CO ₂ capture gas	Hydroge- nation gas	CH ₄ yield [%]	<i>T</i> [°C]	ref
Ni(5)/CeO ₂ *	10%CO ₂ +10%O ₂ /He	100% H ₂	92	300	*
Ru(1)-Ni(10)-Na ₂ O(6.1) /Al ₂ O ₃	7.5%CO ₂ +4.5%O ₂ +15%H ₂ O/N ₂	15%H ₂ /N ₂	5.67	320	1
Pt(1)-Ni(10)-Na ₂ O(6.1) /Al ₂ O ₃	7.5%CO ₂ +4.5%O ₂ +15%H ₂ O/N ₂	15%H ₂ /N ₂	3.73	320	1
Ru(1)-Na ₂ O(6.1) /Al ₂ O ₃	7.5%CO ₂ +4.5%O ₂ +15%H ₂ O/N ₂	15%H ₂ /N ₂	4.63	320	1
Ru(5)-Na ₂ O(6.1) /Al ₂ O ₃	7.5%CO ₂ +4.5%O ₂ +15%H ₂ O/N ₂	15%H ₂ /N ₂	4.35	320	2
Ni(10)-Na ₂ O(6.1) /Al ₂ O ₃	7.5%CO ₂ +4.5%O ₂ +15%H ₂ O/N ₂	15%H ₂ /N ₂	4.12	320	2
Ru(0.95)-K(5) /Al ₂ O ₃	1%CO ₂ +3%O ₂ + 2.5%H ₂ O/He	4%H ₂ /He	0.38	350	3
Ru(0.95)-Ca(5.1) /Al ₂ O ₃	1%CO ₂ +3%O ₂ +2.5%H ₂ O/He	4%H ₂ /He	0.48	350	3
Ru(0.84)-Ba(16) /Al ₂ O ₃	1%CO ₂ +3%O ₂ +2.5%H ₂ O/He	4%H ₂ /He	2.22	350	3
Ni(10)-Ca(30)/Al ₂ O ₃ [†]	1%CO ₂ +10%O ₂ /N ₂	100%H ₂	0.15	450	4
Ni(10)/Al ₂ O ₃ †	1%CO ₂ +10%O ₂ /N ₂	100%H ₂	0.002	450	4
Ni(10)-Ca(6)/Al ₂ O ₃ †	1%CO ₂ +10%O ₂ /N ₂	100%H ₂	0.08	450	4
Ni(10)-Ca(20)/Al ₂ O ₃ †	1%CO ₂ +10%O ₂ /N ₂	100%H ₂	0.09	450	4
Ni(10)-Ca(40)/Al ₂ O ₃ †	1%CO ₂ +10%O ₂ /N ₂	100%H ₂	0.15	450	4
Ni(5)-Ca(30)/Al ₂ O ₃ †	1%CO ₂ +10%O ₂ /N ₂	100%H ₂	0.13	450	4
Ni(20)-Ca(30)/Al ₂ O ₃ †	1%CO ₂ +10%O ₂ /N ₂	100%H ₂	0.14	450	4
Ca(30)-Ni(10)/Al ₂ O ₃ †	1%CO ₂ +10%O ₂ /N ₂	100%H ₂	0.064	450	4
Ni(10)/Al ₂ O ₃	2.5%CO ₂ +10%O ₂ /N ₂	100%H ₂	0.43	500	5
Ni(10)/CaO	2.5%CO ₂ +10%O ₂ /N ₂	100%H ₂	20.4	500	5
Ni(10)-Ca(28)/Al ₂ O ₃	2.5%CO ₂ +10%O ₂ /N ₂	100%H ₂	29.9	500	5
Ni(10)-Ca(8)/Al ₂ O ₃	2.5%CO ₂ +10%O ₂ /N ₂	100%H ₂	8.66	500	5
Ni(10)-Ca(14)/Al ₂ O ₃	2.5%CO ₂ +10%O ₂ /N ₂	100%H ₂	15.54	500	5
Ni(10)-Ca(32)/Al ₂ O ₃	2.5%CO ₂ +10%O ₂ /N ₂	100%H ₂	24.1	500	5
Ni(30)-Ca(28)/Al ₂ O ₃	2.5%CO ₂ +10%O ₂ /N ₂	100%H ₂	20.7	500	5
Ni(50)-Ca(28)/Al ₂ O ₃	2.5%CO ₂ +10%O ₂ /N ₂	100%H ₂	22.63	500	5
Ni(10)-Ca(28)/Al ₂ O ₃	2.5%CO ₂ +10%O ₂ /N ₂	100%H ₂	15.1	400	5
Ni(10)-Ca(28)/Al ₂ O ₃	2.5%CO ₂ /10%O ₂ /N ₂	100%H ₂	5.91	300	5
Ni(10)-Ca(6)/Al ₂ O ₃ †	0.25%CO ₂ +10%O ₂ /N ₂	100%H ₂	14.0	350	6
Ni ₂ Ca ₂ -Mg ₂ Al ₂ /LDH	10%CO ₂ +5%O ₂ /He	20%H ₂ /He	15.68	320	7
Ni ₂ Ca ₄ -Al ₂ /LDH	10%CO ₂ +5%O ₂ /He	20%H ₂ /He	12.88	320	7

Ni ₂ Mg ₂ -Al ₂ -/LDH	10%CO ₂ +5%O ₂ /He	20%H ₂ /He	6.72	320	7
Ni(30)/CaO(15)-MgO(15)-Al ₂ O ₃	10%CO ₂ +5%O ₂ /He	20%H ₂ /He	6.16	320	7
Ru(0.84)-Ba(16)/Al ₂ O ₃	1%CO ₂ +3%O ₂ +2.5%H ₂ O/He	4%H ₂ /He	1.12	350	8
Ru(1)/Al ₂ O ₃	1%CO ₂ +3%O ₂ +2.5%H ₂ O/He	4%H ₂ /He	0.63	350	8
+ Ba(16)/Al ₂ O ₃					
Na-Ni/Al ₂ O ₃	5%CO ₂ +4.5%O ₂ +11%H ₂ O/Ar	5%H ₂ /Ar	0.47	350	9
K-Ni/Al ₂ O ₃	5%CO ₂ +11%H ₂ O+4.5%O ₂ /Ar	5%H ₂ /Ar	2.333	350	9
Ba-Ni/Al ₂ O ₃	5%CO ₂ +11%H ₂ O+4.5%O ₂ /Ar	5%H ₂ /Ar	0.093	350	9
Ru(0.5)-Na ₂ O(6.1) /Al ₂ O ₃	7.5%CO ₂ +4.5%O ₂ +15%H ₂ O/N ₂	15%H ₂ /N ₂	13.44	320	10
Ru(1)-Na ₂ O(6.1) /Al ₂ O ₃	7.5%CO ₂ +4.5%O ₂ +15%H ₂ O/N ₂	15%H ₂ /N ₂	14.93	320	10
Ru(1)-Na/Al ₂ O ₃	10%CO ₂ +10%O ₂ +10%H ₂ O/He	10%H ₂ /Ar	2.6	300	11
Ru(1)-Na/Al ₂ O ₃	10%CO ₂ +10%O ₂ /He	10%H ₂ /Ar	15.4	300	11
Ru(1)-Na/Al ₂ O ₃	10%CO ₂ +10%O ₂ /He	10%H ₂ /Ar	24.3	300	11
HT-23NiR	7.5%CO ₂ +4.5%O ₂ /He	100%H ₂	0.020	250	12
HT-23NiR	7.5%CO ₂ +4.5%O ₂ /He	100%H ₂	0.028	300	12
HT-23NiR	7.5%CO ₂ +4.5%O ₂ /He	100%H ₂	0.022	320	12
HT-46NiR	7.5%CO ₂ +4.5%O ₂ /He	100%H ₂	0.032	250	12
HT-46NiR	7.5%CO ₂ +4.5%O ₂ /He	100%H ₂	0.038	300	12
HT-46NiR	7.5%CO ₂ +4.5%O ₂ /He	100%H ₂	0.032	320	12
Ni-Pr/CeO ₂	10%CO ₂ +10%O ₂ /Ar	10%H ₂ /Ar	3.11	300	13
RuNi-Pr/CeO ₂	10%CO ₂ +10%O ₂ /Ar	10%H ₂ /Ar	3.70	300	13

*This study, [†] using Fig. 2b system.

Table S2. Summary of the reported CO_2 capture and methanation. Entries without *, †, or ‡ symbols using Fig. 1a system.

DFMs or	CO ₂ capture gas	Hydrogenation gas	CH ₄ yield [%]	<i>T</i> [°C]	ref
$\frac{\text{catalyst}}{\text{Ru}(5)-\text{Na}_2\text{CO}_3(10)/\text{Al}_2\text{O}_3}$	5%CO ₂ /N ₂	5%H ₂ /N ₂	5.23	320	14
Ru(5)-K ₂ CO ₃ (10)/Al ₂ O ₃	5%CO ₂ /N ₂	5%H ₂ /N ₂	4.53	320	14
Ni(1)/CeCaCO ₃	15%CO ₂ /N ₂	100%H ₂	8.96	550	15
Ni(10)/CaO	15%CO ₂ /N ₂	100%H ₂	3.73	550	15
Ni(1)/CeO ₂ -CaOphy	15%CO ₂ /N ₂	100%H ₂	11.9	550	15
Ni(10)/g-Al ₂ O ₃	5%CO ₂ /N ₂	100%H ₂	0.19	450	16
Ni(10)-Na(15)/g-Al ₂ O ₃	5%CO ₂ /N ₂	100%H ₂	3.33	450	16
Ni(10)-K(15)/g-Al ₂ O ₃	5%CO ₂ /N ₂	100%H ₂	2.51	450	16
Ni(10)-Ca(15)/g-Al ₂ O ₃	5%CO ₂ /N ₂	100%H ₂	1.08	450	16
Ni(10)-Na(15)/g-Al ₂ O ₃	5%CO ₂ /N ₂	100%H ₂	4.77	450	16
Ni(10)-Na(15)/g-Al ₂ O ₃	0.04%CO ₂ /N ₂	100%H ₂	17.8	450	16
Ni(10)-Na(15)/g-Al ₂ O ₃	0.01%CO ₂ /N ₂	100%H ₂	49.7	450	16
Ni(10)-Na(15)/g-Al ₂ O ₃ ‡	2%CO ₂ /N ₂	100%H ₂	99	400	17
Ru(10)/CaO	1.4%CO ₂ /Ar	10%H ₂ /Ar	31.1	370	18
Ru(10)/Na ₂ CO ₃	1.4%CO ₂ /Ar	10%H ₂ /Ar	48.9	370	18
Ru(5)/CaO	11%CO ₂ /Ar	10%H ₂ /Ar	2.04	280	18
Ru(5)/CaO	11%CO ₂ /Ar	10%H ₂ /Ar	1.95	310	18
Ru(5)/CaO	11%CO ₂ /Ar	10%H ₂ /Ar	1.87	340	18
Ru(5)/CaO	11%CO ₂ /Ar	10%H ₂ /Ar	1.70	370	18
Ru(5)/CaO	11%CO ₂ /Ar	10%H ₂ /Ar	1.53	400	18
Ru(10)/CaO	11%CO ₂ /Ar	10%H ₂ /Ar	3.39	280	18
Ru(10)/CaO	11%CO ₂ /Ar	10%H ₂ /Ar	3.56	310	18
Ru(10)/CaO	11%CO ₂ /Ar	10%H ₂ /Ar	3.73	340	18
Ru(10)/CaO	11%CO ₂ /Ar	10%H ₂ /Ar	3.90	370	18
Ru(10)/CaO	11%CO ₂ /Ar	10%H ₂ /Ar	4.07	400	18
Ru(15)/CaO	11%CO ₂ /Ar	10%H ₂ /Ar	3.05	280	18
Ru(15)/CaO	11%CO ₂ /Ar	10%H ₂ /Ar	4.50	310	18
Ru(15)/CaO	11%CO ₂ /Ar	10%H ₂ /Ar	5.43	340	18
Ru(15)/CaO	11%CO ₂ /Ar	10%H ₂ /Ar	6.11	370	18
Ru(15)/CaO	11%CO ₂ /Ar	10%H ₂ /Ar	6.45	400	18
Ru(5)/Na ₂ CO ₃	11%CO ₂ /Ar	10%H ₂ /Ar	2.55	280	18
Ru(5)/Na ₂ CO ₃	11%CO ₂ /Ar	10%H ₂ /Ar	2.21	310	18
Ru(5)/Na ₂ CO ₃	11%CO ₂ /Ar	10%H ₂ /Ar	1.87	340	18
Ru(5)/Na ₂ CO ₃	11%CO ₂ /Ar	10%H ₂ /Ar	1.70	370	18

Ru(5)/Na ₂ CO ₃	11%CO ₂ /Ar	10%H ₂ /Ar	1.53	400	18
Ru(10)/Na ₂ CO ₃	11%CO ₂ /Ar	10%H ₂ /Ar	6.11	280	18
Ru(10)/Na ₂ CO ₃	11%CO ₂ /Ar	10%H ₂ /Ar	6.19	310	18
Ru(10)/Na ₂ CO ₃	11%CO ₂ /Ar	10%H ₂ /Ar	6.11	340	18
Ru(10)/Na ₂ CO ₃	11%CO ₂ /Ar	10%H ₂ /Ar	5.85	370	18
Ru(10)/Na ₂ CO ₃	11%CO ₂ /Ar	10%H ₂ /Ar	5.18	400	18
Ru(15)/Na ₂ CO ₃	11%CO ₂ /Ar	10%H ₂ /Ar	5.77	280	18
Ru(15)/Na ₂ CO ₃	11%CO ₂ /Ar	10%H ₂ /Ar	6.11	310	18
Ru(15)/Na ₂ CO ₃	11%CO ₂ /Ar	10%H ₂ /Ar	6.11	340	18
Ru(15)/Na ₂ CO ₃	11%CO ₂ /Ar	10%H ₂ /Ar	6.02	370	18
Ru(15)/Na ₂ CO ₃	11%CO ₂ /Ar	10%H ₂ /Ar	5.85	400	18
Ni(5)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	1.70	520	19
Ni(10)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	1.96	520	19
Ni(10)-CaO(15)/Al ₂ O ₃ coimp	10%CO ₂ /Ar	10%H ₂ /Ar	2.05	520	19
Ni(15)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.65	520	19
Ni(5)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	1.31	480	19
Ni(10)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	1.90	480	19
Ni(10)-CaO(15)/Al ₂ O ₃ coimp	10%CO ₂ /Ar	10%H ₂ /Ar	1.87	480	19
Ni(15)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.43	480	19
Ni(5)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	1.4	440	19
Ni(10)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	1.50	440	19
Ni(10)-CaO(15)/Al ₂ O ₃ coimp	10%CO ₂ /Ar	10%H ₂ /Ar	1.50	440	19
Ni(15)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.33	440	19
Ni(5)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	1.4	400	19
Ni(10)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	1.49	400	19
Ni(10)-CaO(15)/Al ₂ O ₃ coimp	10%CO ₂ /Ar	10%H ₂ /Ar	1.31	400	19
Ni(15)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.24	400	19
Ni(5)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	1.31	360	19
Ni(10)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	1.4	360	19
Ni(10)-CaO(15)/Al ₂ O ₃ coimp	10%CO ₂ /Ar	10%H ₂ /Ar	0.93	360	19
Ni(15)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.05	360	19
Ni(5)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	0.93	320	19
Ni(10)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	1.12	320	19
Ni(10)-CaO(15)/Al ₂ O ₃ coimp	10%CO ₂ /Ar	10%H ₂ /Ar	0.47	320	19
Ni(15)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	1.49	320	19
Ni(5)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	0.19	280	19
Ni(10)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	0.56	280	19
Ni(10)-CaO(15)/Al ₂ O ₃ coimp	10%CO ₂ /Ar	10%H ₂ /Ar	0.19	280	19

Ni(15)-CaO(15)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	0.93	280	19
Ni(5)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	1.87	520	19
Ni(10)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	1.96	520	19
Ni(10)-Na ₂ CO ₃ (10)/Al ₂ O ₃ coimp	10%CO ₂ /Ar	10%H ₂ /Ar	1.96	520	19
Ni(15)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.05	520	19
Ni(5)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.24	480	19
Ni(10)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.61	480	19
Ni(10)-Na ₂ CO ₃ (10)/Al ₂ O ₃ coimp	10%CO ₂ /Ar	10%H ₂ /Ar	2.52	480	19
Ni(15)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.52	480	19
Ni(5)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.33	440	19
Ni(10)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.8	440	19
Ni(10)-Na ₂ CO ₃ (10)/Al ₂ O ₃ coimp	10%CO ₂ /Ar	10%H ₂ /Ar	2.8	440	19
Ni(15)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.8	440	19
Ni(5)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.8	400	19
Ni(10)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	3.45	400	19
Ni(10)-Na ₂ CO ₃ (10)/Al ₂ O ₃ coimp	10%CO ₂ /Ar	10%H ₂ /Ar	3.43	400	19
Ni(15)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	3.47	400	19
Ni(5)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	3.36	360	19
Ni(10)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	3.17	360	19
Ni(10)-Na ₂ CO ₃ (10)/Al ₂ O ₃ coimp	10%CO ₂ /Ar	10%H ₂ /Ar	2.8	360	19
Ni(15)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	3.27	360	19
Ni(5)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	1.4	320	19
Ni(10)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.05	320	19
Ni(10)-Na ₂ CO ₃ (10)/Al ₂ O ₃ coimp	10%CO ₂ /Ar	10%H ₂ /Ar	1.49	320	19
Ni(15)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.33	320	19
Ni(5)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	0.093	280	19
Ni(10)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	0.56	280	19
Ni(10)-Na ₂ CO ₃ (10)/Al ₂ O ₃ coimp	10%CO ₂ /Ar	10%H ₂ /Ar	0.37	280	19
Ni(15)-Na ₂ CO ₃ (10)/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	0.65	280	19
Ru(2.5)/CeO ₂	65%CO ₂ /N ₂	5%H ₂ /N ₂	2.96	300	20
Ru(5)/CeO ₂	65%CO ₂ /N ₂	5%H ₂ /N ₂	3.41	300	20
Ru(10)/CeO ₂	65%CO ₂ /N ₂	5%H ₂ /N ₂	3.65	300	20
Ni(20)/MgO	10%CO ₂ /Ar	5%H ₂ /Ar	0.17	250	21
Ni(20)/MgO	10%CO ₂ /Ar	5%H ₂ /Ar	0.50	300	21
Ni(20)/MgO	10%CO ₂ /Ar	5%H ₂ /Ar	0.45	350	21
Ni(50)/MgO	10%CO ₂ /Ar	5%H ₂ /Ar	0.34	250	21
Ni(50)/MgO	10%CO ₂ /Ar	5%H ₂ /Ar	1.23	300	21
Ni(50)/MgO	10%CO ₂ /Ar	5%H ₂ /Ar	1.06	350	21

Ni(80)/MgO	10%CO ₂ /Ar	5%H ₂ /Ar	0.45	250	21
Ni(80)/MgO	10%CO ₂ /Ar	5%H ₂ /Ar	1.51	300	21
Ni(80)/MgO	10%CO ₂ /Ar	5%H ₂ /Ar	1.29	350	21
Com-Ni(50)/MgO	10%CO ₂ /Ar	5%H ₂ /Ar	0.017	250	21
Com-Ni(50)/MgO	10%CO ₂ /Ar	5%H ₂ /Ar	0.45	300	21
Com-Ni(50)/MgO	10%CO ₂ /Ar	5%H ₂ /Ar	0.039	350	21
Ni/CaO	10%CO ₂ /N ₂	10%H ₂ /N ₂	0.67	400	22
Ni/CaO-MgO	10%CO ₂ /N ₂	10%H ₂ /N ₂	0.69	400	22
Ni/CaO-MgO	10%CO ₂ /N ₂	10%H ₂ /N ₂	0.24	400	22
Ni/MgO	10%CO ₂ /N ₂	10%H ₂ /N ₂	0.15	400	22
AMS-Ni/MgO	65%CO ₂ /N ₂	20%H ₂ /N ₂	0.040	450	23
AMS-Ni/MgO	65%CO ₂ /N ₂	60%H ₂ /N ₂	0.052	450	23
AMS-Ni/MgO	65%CO ₂ /N ₂	100%H ₂	0.046	450	23
AMS-Ni/MgO	65%CO ₂ /N ₂	100%H ₂	0.034	400	23
AMS-Ni/MgO	65%CO ₂ /N ₂	100%H ₂	0.044	500	23
Ru(0.84)-Ba(16)/Al ₂ O ₃	1%CO ₂ /He	4%H ₂ /He	2.06	350	24
Ru(1)/Al ₂ O ₃	1%CO ₂ /He	4%H ₂ /He	1.32	350	24
+ Ba(16)/Al ₂ O ₃					
Ru(1)/Al ₂ O ₃	1%CO ₂ /He	4%H ₂ /He	0.027	350	3
Ru(0.99)-Li(1)/Al ₂ O ₃	1%CO ₂ /He	4%H ₂ /He	0.027	350	3
Ru(0.97)-Na(3)/Al ₂ O ₃	1%CO ₂ /He	4%H ₂ /He	0.63	350	3
Ru(0.95)-K(5)/Al ₂ O ₃	1%CO ₂ /He	4%H ₂ /He	2.53	350	3
Ru(0.97)-Mg(3.2)/Al ₂ O ₃	1%CO ₂ /He	4%H ₂ /He	0.054	350	3
Ru(0.95)-Ca(5.1)/Al ₂ O ₃	1%CO ₂ /He	4%H ₂ /He	1.85	350	3
Ru(0.84)-Ba(16)/Al ₂ O ₃	1%CO ₂ /He	4%H ₂ /He	3.02	350	3
Ru/rod-CeO ₂ -MgO	35%CO ₂ /N ₂	5%H ₂ /N ₂	0.22	300	25
Ru/particle-CeO ₂ -MgO	35%CO ₂ /N ₂	5%H ₂ /N ₂	0.24	300	25
Ru/cube-CeO ₂ -MgO	35%CO ₂ /N ₂	5%H ₂ /N ₂	0.032	300	25
Ni-Na ₂ CO ₃ /Al ₂ O ₃	9.5%CO ₂ /N ₂	10%H ₂ /N ₂	1.12	320	26
Ni-CaO/Al ₂ O ₃	9.5%CO ₂ /N ₂	10%H ₂ /N ₂	0.88	320	26
Li ₄ SiO ₄ @Ni(2.5)/CeO ₂	15%CO ₂ /N ₂	100%H ₂	9.16	560	27
Li ₄ SiO ₄ @Ni(5)/CeO ₂	15%CO ₂ /N ₂	100%H ₂	9.96	560	27
Li ₄ SiO ₄ @Ni(7.5)/CeO ₂	15%CO ₂ /N ₂	100%H ₂	9.56	560	27
Na-Ni/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	0.16	250	28
K-Ni/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	0.17	250	28
Ba-Ni/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	0.084	250	28
Na-Ni/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	1.87	300	28
K-Ni/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	2.43	300	28

Ba-Ni/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	0.47	300	28
Ni/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	0.47	300	28
Na-Ni/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	3.17	350	28
K-Ni/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	1.49	350	28
Ba-Ni/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	0.93	350	28
Na-Ni/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	2.61	400	28
K-Ni/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	1.59	400	28
Ba-Ni/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	0.75	400	28
Na-Ni/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	2.89	450	28
K-Ni/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	2.29	450	28
Ba-Ni/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	0.65	450	28
Ru(0.89)-Li(5)/Al ₂ O ₃	10%CO ₂ /N ₂	10%H ₂ /N ₂	2.02	280	29
Ru(3)-K(10)/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	4.85	300	29
Ru(3)-K(10)/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	0.93	350	29
Ru(3)-K(10)/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	7.09	400	29
Ru(3)-K(10)/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	4.57	450	29
Ru(3)-Na(10)/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	10.4	300	29
Ru(3)-Na(10)/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	9.15	350	29
Ru(3)-Na(10)/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	7.65	400	29
Ru(3)-Na(10)/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	3.45	450	29
Ru(3)-Ba(10)/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	1.49	250	29
Ru(3)-Ba(10)/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	6.35	300	29
Ru(3)-Ba(10)/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	4.85	350	29
Ru(3)-Ba(10)/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	2.05	400	29
Ru(3)-Ba(10)/Al ₂ O ₃	5%CO ₂ /Ar	5%H ₂ /Ar	2.61	450	29
Ru(1)-Na(20)/Al ₂ O ₃	10%CO ₂ /N ₂	5%H ₂ /N ₂	1.53	340	30
Ru(0.5)-Na ₂ O(6.1) /Al ₂ O ₃	7.5%CO ₂ /N ₂	15%H ₂ /N ₂	9.71	320	31
Ru(0.5)-Na ₂ O(6.1)/Al ₂ O ₃	7.5%CO ₂ +	15%H ₂ /N ₂	7.47	320	31
Ni/Hydrotalcite	15%CO ₂ /N ₂	100%H ₂	3.88	400	32
Ni/Hydrotalcite	15%CO ₂ /N ₂	100%H ₂	4.85	450	32
Ni/Hydrotalcite	15%CO ₂ /N ₂	100%H ₂	4.78	500	32
Ni/Hydrotalcite	15%CO ₂ /N ₂	100%H ₂	3.96	550	32
Ni/Hydrotalcite	15%CO ₂ /N ₂	100%H ₂	3.58	600	32
Ni-Cs(10)/Hydrotalcite	15%CO ₂ /N ₂	100%H ₂	4.93	350	32
Ni(1)/CaO	15%CO ₂ /N ₂	100%H ₂	2.99	550	33
Ni(10)/CaO	15%CO ₂ /N ₂	100%H ₂	3.73	550	33
Ni(1)/CeCaO	15%CO ₂ /N ₂	100%H ₂	4.93	550	33
	1	1	1		1

Ni(1)/CeCaCO3	15%CO ₂ /N ₂	100%H ₂	8.96	550	33
Ni(1)/CeO ₂	15%CO ₂ /N ₂	100%H ₂	11.95	550	33
+ CaO					
LaNiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	1.16	280	34
LaNiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	1.77	320	34
LaNiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	1.87	360	34
LaNiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	2.02	400	34
LaNiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	2.05	440	34
LaNiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	2.00	480	34
LaNiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	1.92	520	34
La _{0.7} Ca _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	1.4	280	34
La _{0.7} Ca _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	1.87	320	34
La _{0.7} Ca _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	2.24	360	34
La _{0.7} Ca _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	2.39	400	34
La _{0.7} Ca _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	2.61	440	34
La _{0.7} Ca _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	2.8	480	34
La _{0.7} Ca _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	2.37	520	34
La _{0.7} Ba _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	1.16	280	34
La _{0.7} Ba _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	1.77	320	34
La _{0.7} Ba _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	2.02	360	34
La _{0.7} Ba _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	2.05	400	34
La _{0.7} Ba _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	1.98	440	34
La _{0.7} Ba _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	1.59	480	34
La _{0.7} Ba _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	1.4	520	34
La _{0.7} Na _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	1.08	280	34
La _{0.7} Na _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	1.21	320	34
La _{0.7} Na _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	1.30	360	34
La _{0.7} Na _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	1.16	400	34
La _{0.7} Na _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	1.10	440	34
La _{0.7} Na _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	1.03	480	34
La _{0.7} Na _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	0.75	520	34
La _{0.7} K _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	0.65	280	34
La _{0.7} K _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	0.896	320	34
La _{0.7} K _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	0.93	360	34
La _{0.7} K _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	0.93	400	34
La _{0.7} K _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	0.91	440	34
La _{0.7} K _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	0.90	480	34
La _{0.7} K _{0.3} NiO ₃ (20)/CeO ₂	10%CO ₂ /Ar	5%H ₂ /Ar	0.84	520	34

Ru/CeO ₂ -CaCO ₃	20%CO ₂ /N ₂	100%H ₂	1.79	350	35
Ru/CeO ₂ -KNO ₃ CaCO ₃	20%CO ₂ /N ₂	100%H ₂	2.52	350	35
Ru/CeO ₂ -LiNO ₃ CaCO ₃	20%CO ₂ /N ₂	100%H ₂	1.456	350	35
Ru/CeO ₂ -(Li-K)NO ₃ CaCO ₃	20%CO ₂ /N ₂	100%H ₂	2.184	350	35
Ru/CeO ₂ -KNO ₃ CaCO ₃	20%CO ₂ /N ₂	100%H ₂	3.192	400	35
Ru/CeO ₂ -KNO ₃ CaCO ₃	20%CO ₂ /N ₂	100%H ₂	5.32	450	35
Ru/CeO ₂ -KNO ₃ CaCO ₃	20%CO ₂ /N ₂	100%H ₂	3.81	500	35
Ru(0.25)-Na/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	0.72	300	36
Ru(0.5)-Na/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.27	300	36
Ru(1)-Na/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.688	300	36
Ru(2)-Na/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.68	300	36
Ru(4)-Na/Al ₂ O ₃	10%CO ₂ /Ar	10%H ₂ /Ar	2.66	300	36
Ni-Pr/CeO ₂	10%CO ₂ /Ar	10%H ₂ /Ar	4.66	300	13
RuNi-Pr/CeO ₂	10%CO ₂ /Ar	10%H ₂ /Ar	5.62	300	13
Ni/MgO	65%CO ₂ /N ₂	50%H ₂ /N ₂	0.046	500	37

‡ using a circulating fluidized system similar to Fig. 2b

Table S3. Summary of the continuous CO_2 capture and RWGS reaction in this study and other reported CO_2 capture and RWGS reaction considering the effect of coexistent O_2 . Entries without *, †, or ‡ symbols using Fig. 1a system.

DFMs or	CO ₂ capture gas	Hydrogenation gas	CO yield [%]	<i>T</i> [°C]	ref
catalyst		5		[0]	
Cu/ZnO/Al ₂ O ₃ *	10%CO ₂ +10%O ₂ /He	100%H ₂	85.1	650	*
Pt(1)-Na(3)/Al ₂ O ₃	1%CO ₂ +10%O ₂ /N ₂	5%H ₂ /N ₂	8.8	350	38
Pt(1)-Na(3)/Al ₂ O ₃ †	1%CO ₂ +10%O ₂ /N ₂	100% H ₂	89.0	350	38
Pt(1)-Na(3)/MgO	1%CO ₂ +10%O ₂ /N ₂	5%H ₂ /N ₂	3.4	350	38
Pt(1)-Ca(6)/Al ₂ O ₃	1%CO ₂ +10%O ₂ /N ₂	5%H ₂ /N ₂	2.3	350	38
Pt(1)-Mg(3)/Al ₂ O ₃	1%CO ₂ /10%O ₂ /N ₂	5%H ₂ /N ₂	0.56	350	38
Pt(1)-K(6)/Al ₂ O ₃	1%CO ₂ +10%O ₂ /N ₂	5%H ₂ /N ₂	0.39	350	38
Ru(1)-Na(3)/Al ₂ O ₃	1%CO ₂ +10%O ₂ /N ₂	5%H ₂ /N ₂	0.34	350	38
Cu(1)-Na(3)/Al ₂ O ₃	1%CO ₂ +10%O ₂ /N ₂	5%H ₂ /N ₂	0.17	350	38
Pt(1)-Na(3)/SiO ₂	1%CO ₂ +10%O ₂ /N ₂	5%H ₂ /N ₂	0.34	350	38
Pt(1)-Na(3)/TiO ₂	1%CO ₂ +10%O ₂ /N ₂	5%H ₂ /N ₂	1.68	350	38
Rb-Ni/Al ₂ O ₃ †	0.5%CO ₂ +10%O ₂ /N ₂	20%H ₂ /N ₂	47.8	450	39
Pt-Na/Al ₂ O ₃ †	0.5%CO ₂ +10%O ₂ /N ₂	20%H ₂ /N ₂	34.7	450	39
Ni-Rb/Al ₂ O ₃ †	0.5%CO ₂ +10%O ₂ /N ₂	20%H ₂ /N ₂	28.2	450	39
Na-Ni/Al ₂ O ₃ †	0.5%CO ₂ +10%O ₂ /N ₂	20%H ₂ /N ₂	12.9	450	39
Mg-Ni/Al ₂ O ₃ †	0.5%CO ₂ +10%O ₂ /N ₂	20%H ₂ /N ₂	0.54	450	39
Na/Al ₂ O ₃	0.5%CO ₂ +10%O ₂ /N ₂	20%H ₂ /N ₂	15.1	450	39
Rb/Al ₂ O ₃	0.5%CO ₂ +10%O ₂ /N ₂	20%H ₂ /N ₂	16.1	450	39
Fe(6.91)Cr(0.58)Cu(0.20)- K(9.98)/hydrotalcite	5.8%CO ₂ +5%O ₂ +4%H ₂ O/N ₂	100%H ₂	41.3	450	40
Fe(6.91)Cr(0.58)Cu(0.20)- K(9.98)/bydrotalcite	5.8%CO ₂ +5%O ₂ +4%H ₂ O/N ₂	100%H ₂	52.2	500	40
Fe(6.91)Cr(0.58)Cu(0.20)- K(9.98)/hydrotalcite	5.8%CO ₂ +5%O ₂ +4%H ₂ O/N ₂	100%H ₂	56.0	530	40

*This study [†] using Fig. 2b system.

Table S4. Summary of reported CO_2 capture and RWGS reaction. Entries without *, †, or ‡ symbols using Fig. 1a system.

DFMs or catalyst	CO ₂ capture gas	Hydrogenation gas	CO yield. [%]	<i>T</i> [°C]	ref
Ca ₁ Ni _{0.1} O	15%CO ₂ /N ₂	5%H ₂ /N ₂	10.3	650	41
Ca ₁ Ni _{0.1} Ce _{0.017} O	15%CO ₂ /N ₂	5%H ₂ /N ₂	10.8	650	41
Ca ₁ Ni _{0.1} Ce _{0.033} O	15%CO ₂ /N ₂	5%H ₂ /N ₂	10.9	650	41
Fe(5)Co(5)Mg(10)/CaO	10%CO ₂ /He	100%H ₂	30.9	650	42
CaO	10%CO ₂ /He	100%H ₂	10.3	650	42
Fe(10)Mg(10)/CaO	10%CO ₂ /He	100%H ₂	26.9	650	42
Fe(8)Co(2)Mg(10)CaO	10%CO ₂ /He	100%H ₂	26.5	650	42
Fe(7.5)Co(2.5)Mg(10)CaO	10%CO ₂ /He	100%H ₂	27.7	650	42
Fe(6.7)Co(3.3)Mg(10)CaO	10%CO ₂ /He	100%H ₂	29.7	650	42
Fe(3.3)Co(6.7)Mg(10)CaO	10%CO ₂ /He	100%H ₂	26.0	650	42
Co(10)Mg(10)CaO	10%CO ₂ /He	100%H ₂	24.4	650	42
Ni(10)/CaO	10%CO ₂ /N ₂	5%H ₂ /N ₂	10.6	650	43
Ni(10)/Carbide slag(CS)	10%CO ₂ /N ₂	5%H ₂ /N ₂	10.6	650	43
Rb-Ni/Al ₂ O ₃	0.5%CO ₂ /N ₂	20%H ₂ /N ₂	22.0	450	39
Ni(10)/CaZr(O)	15%CO ₂ /N ₂	66.7%H ₂ /N ₂	4.80	600	44
Ni(10)/CaAl(O)	15%CO ₂ /N ₂	66.7%H ₂ /N ₂	6.95	600	44
Ni(10)/CaO	15%CO ₂ /N ₂	66.7%H ₂ /N ₂	6.09	600	44
Ni(10)/CaMg(O)	15%CO ₂ /N ₂	66.7%H ₂ /N ₂	5.37	600	44
Cu(11)-K(10)/Al ₂ O ₃	4.4%CO ₂ /He	100%H ₂	27.6	450	45
Fe(6.91)Cr(0.58)Cu(0.20)- K(9.98)/hydrotalcite	5.8%CO ₂ /N ₂	100%H ₂	72.7	550	40
Fe(6.91)Cr(0.58)Cu(0.20)- K(9.98)/hydrotalcite	5.8%CO ₂ +4%H ₂ O/N ₂	100%H ₂	64.3	550	40
Fe(6.91)Cr(0.58)Cu(0.20)-	5.8%CO ₂ /4%O ₂ /N ₂	100%H ₂	50.8	550	40
Fe(6.91)Cr(0.58)Cu(0.20)-	7.6%CO ₂ /N ₂	100%H ₂	54.7	550	40
Fe(6.91)Cr(0.58)Cu(0.20)-	7.6%CO ₂ /4%H ₂ O/N ₂	100%H ₂	44.9	550	40
K(9.98)/hydrotalcite Fe(6.91)Cr(0.58)Cu(0.20)-	9.5%CO ₂ /N ₂	100%H ₂	38.7	550	40
K(9.98)/hydrotalcite		4000/11	20.4	550	40
K(9.98)/hydrotalcite	9.5%CO ₂ /4%H ₂ O/N ₂	100%H ₂	32.4	550	40
Fe(6.91)Cr(0.58)Cu(0.20)-	5.8%CO ₂ /N ₂	100%H ₂	72.3	450	40
Fe(6.91)Cr(0.58)Cu(0.20)-	5.8%CO ₂ /N ₂	100%H ₂	72.7	470	40
Fe(6.91)Cr(0.58)Cu(0.20)-	5.8%CO ₂ /N ₂	100%H ₂	78.5	500	40
K(9.98)/hydrotalcite Fe(6.91)Cr(0.58)Cu(0.20)-	5.8%CO ₂ /N ₂	100%H ₂	83.1	530	40
K(9.98)/hydrotalcite		-	5.00	450	46
Na(16)/Al ₂ O ₃	5%CU ₂ /N ₂	100%H ₂	5.08	450	40

K(21)/Al ₂ O ₃	5%CO ₂ /N ₂	100%H ₂	5.97	450	46
Ca(15)/Al ₂ O ₃	5%CO ₂ /N ₂	100%H ₂	2.7	450	46
Al ₂ O ₃	5%CO ₂ /N ₂	100%H ₂	0.30	450	46
Na(16)/Al ₂ O ₃	5%CO ₂ /N ₂	100%H ₂	2.33	350	46
Na(16)/Al ₂ O ₃	5%CO ₂ /N ₂	100%H ₂	4.928	400	46
Na(16)/Al ₂ O ₃	5%CO ₂ /N ₂	100%H ₂	5.36	500	46
CaO	15%CO ₂ /N ₂	15%H ₂	1.58	600	47
CaO	15%CO ₂ /N ₂	15%H ₂	7.1	650	47
СаО	15%CO ₂ /N ₂	15%H ₂	19.3	700	47
CeO ₂ (33)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	2.16	650	47
CeO ₂ (33)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	0.98	600	47
CeO ₂ (33)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	3.63	700	47
CeO ₂ (33)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	1.81	750	47
CeO ₂ (10)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	0.84	600	47
CeO ₂ (10)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	3.56	650	47
CeO ₂ (10)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	4.88	700	47
CeO ₂ (10)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	2.23	750	47
CeO ₂ (16)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	0.70	600	47
CeO ₂ (16)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	2.51	650	47
CeO ₂ (16)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	4.74	700	47
CeO ₂ (16)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	2.65	750	47
CeO ₂ (50)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	0.56	600	47
CeO ₂ (50)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	2.23	650	47
CeO ₂ (50)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	2.93	700	47
CeO ₂ (50)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	0.84	750	47
CeO ₂ (67)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	0.35	600	47
CeO ₂ (67)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	1.39	650	47
CeO ₂ (67)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	1.39	700	47
CeO ₂ (67)/CaO	17%CO ₂ /N ₂	5%H ₂ /N ₂	0.56	750	47
Ni/CaO	10%CO ₂ /10%H ₂ O/N ₂	10%H ₂ /N ₂	21.5	700	48
La(15)-Ni(2.5)/CaO	10%CO ₂ /Ar	10%H ₂ /Ar	43.3	650	49
Mg(15)-Ni(2.5)/CaO	10%CO ₂ /Ar	10%H ₂ /Ar	38.8	650	49
Zr(15)-Ni(2.5)/CaO	10%CO ₂ /Ar	10%H ₂ /Ar	36.3	650	49
Ce(15)-Ni(2.5)/CaO	10%CO ₂ /Ar	10%H ₂ /Ar	41.3	650	49
Ni(2.5)/CaO	10%CO ₂ /Ar	10%H ₂ /Ar	31.36	650	49

References

- 1. Arellano-Treviño, M. A., Kanani, N., Jeong-Potter, C. W. & Farrauto, R. J. Bimetallic catalysts for CO₂ capture and hydrogenation at simulated flue gas conditions. *Chem. Eng. J.* **375**, (2019).
- Arellano-Treviño, M. A., He, Z., Libby, M. C. & Farrauto, R. J. Catalysts and adsorbents for CO₂ capture and conversion with dual function materials: Limitations of Ni-containing DFMs for flue gas applications. *J. CO2 Util.* **31**, 143–151 (2019).
- Porta, A., Matarrese, R., Visconti, C. G., Castoldi, L. & Lietti, L. Storage Material Effects on the Performance of Ru-Based CO₂ Capture and Methanation Dual Functioning Materials. *Ind Eng Chem Res* 60, 6706–6718 (2021).
- Li, L. *et al.* Continuous CO₂ capture and methanation over Ni-Ca/Al₂O₃ dual functional materials. *RSC Adv* 13, 2213–2219 (2023).
- 5. Miyazaki, S. *et al. In Situ* Spectroscopic Study of CO₂ Capture and Methanation over Ni–Ca Based Dual Functional Materials. *Chem Asian J* (2023) e202301003.
- 6. Li, L. *et al.* Continuous direct air capture and methanation using combined system of membrane-based CO₂ capture and Ni-Ca based dual functional materials. *Appl Catal B* **339**, (2023).
- 7. Sakai, M., Imagawa, H. & Baba, N. Layered-double-hydroxide-based Ni catalyst for CO₂ capture and methanation. *Appl Catal A Gen* **647**, (2022).
- 8. Porta, A. *et al.* Ru-Ba synergistic effect in dual functioning materials for cyclic CO₂ capture and methanation. *Appl Catal B* **283**, (2021).
- 9. García-Bordejé, E., Belén Dongil, A., Conesa, J. M., Guerrero-Ruiz, A. & Rodríguez-Ramos, I. Dual functional materials based on Ni and different alkaline metals on alumina for the cyclic stepwise CO₂ capture and methanation. *Chemical Engineering Journal* **472**, (2023).
- 10. Jeong-Potter, C. *et al.* Aging study of low Ru loading dual function materials (DFM) for combined power plant effluent CO₂ capture and methanation. *Appl Catal B* **310**, (2022).
- 11. Tsiotsias, A. I. *et al.* CO₂ capture and methanation using Ru/Na₂O/Al₂O₃ dual-function materials: Effect of support synthesis method and Ru load. *J Environ Chem Eng* **12**, (2024).
- 12. Marin, J., Parra, P. & Rios, L. Improved Dual Function Materials for CO₂ Capture and In Situ Methanation. *Energy Technology* **12**, (2024).
- 13. Tsiotsias, A. I. *et al.* Integrating capture and methanation of CO₂ using physical mixtures of Na-Al₂O₃ and mono-/ bimetallic (Ru)Ni/Pr-CeO₂. *Chemical Engineering Journal* **491**, (2024).
- 14. Duyar, M. S., Wang, S., Arellano-Treviño, M. A. & Farrauto, R. J. CO₂ utilization with a novel dual function material (DFM) for capture and catalytic conversion to synthetic natural gas: An update. *Journal of CO2 Utilization* **15**, 65–71 (2016).
- 15. Sun, H. *et al.* Understanding the interaction between active sites and sorbents during the integrated carbon capture and utilization process. *Fuel* **286**, (2021).
- 16. Kosaka, F. *et al.* Enhanced Activity of Integrated CO₂ Capture and Reduction to CH₄ under Pressurized Conditions toward Atmospheric CO₂ Utilization. *ACS Sustain Chem Eng* **9**, 3452–3463 (2021).
- 17. Kosaka, F. *et al.* Direct and continuous conversion of flue gas CO₂ into green fuels using dual function materials in a circulating fluidized bed system. *Chemical Engineering Journal* **450**, (2022).
- Bermejo-López, A., Pereda-Ayo, B., González-Marcos, J. A. & González-Velasco, J. R. Mechanism of the CO2 storage and in situ hydrogenation to CH₄. Temperature and adsorbent loading effects over Ru-CaO/Al2O3 and Ru-Na₂CO₃/Al₂O₃ catalysts. *Appl Catal B* **256**, (2019).
- 19. Bermejo-López, A., Pereda-Ayo, B., González-Marcos, J. A. & González-Velasco, J. R. Ni loading effects on dual function materials for capture and in-situ conversion of CO₂ to CH₄ using CaO or Na₂CO₃. *Journal of CO2 Utilization* **34**, 576–587 (2019).
- 20. Sun, H., Zhang, Y., Guan, S., Huang, J. & Wu, C. Direct and highly selective conversion of captured CO₂ into methane through integrated carbon capture and utilization over dual functional materials. *Journal of*

CO2 Utilization **38**, 262–272 (2020).

- 21. Guo, Z. K. *et al.* Mechanochemical synthesis of Ni/MgO dual functional materials at room temperature for CO2 capture and methanation. *Chemical Engineering Journal* **481**, (2024).
- 22. Wu, X. *et al.* An investigation of the Ni/carbonate interfaces on dual function materials in integrated CO₂ capture and utilisation cycles. *Appl Catal B* **338**, (2023).
- Huang, P. *et al.* Influence of reduction conditions on the structure-activity relationships of NaNO₃-promoted Ni/MgO dual function materials for integrated CO₂ capture and methanation. *Chemical Engineering Journal* 467, (2023).
- 24. Porta, A. *et al.* Ru-Ba synergistic effect in dual functioning materials for cyclic CO₂ capture and methanation. *Appl Catal B* **283**, (2021).
- 25. Sun, S., Sun, H., Guan, S., Xu, S. & Wu, C. Integrated CO₂ capture and methanation on Ru/CeO₂-MgO combined materials: Morphology effect from CeO₂ support. *Fuel* **317**, (2022).
- 26. Chai, K. H., Leong, L. K., Wong, D. S. H., Tsai, D. H. & Sethupathi, S. Effect of CO₂ adsorbents on the Nibased dual-function materials for CO₂ capturing and in situ methanation. *Journal of the Chinese Chemical Society* **67**, 998–1008 (2020).
- 27. Lv, Z. *et al.* Integrated CO2 capture and In-Situ methanation by efficient dual functional Li₄SiO₄@Ni/CeO₂. *Sep Purif Technol* **309**, (2023).
- 28. García-Bordejé, E., Belén Dongil, A., Conesa, J. M., Guerrero-Ruiz, A. & Rodríguez-Ramos, I. Dual functional materials based on Ni and different alkaline metals on alumina for the cyclic stepwise CO₂ capture and methanation. *Chemical Engineering Journal* **472**, (2023).
- 29. García-Bordejé, E. *et al.* Cyclic performance in CO₂ capture-methanation of bifunctional Ru with different base metals: Effect of the reactivity of COx ad-species. *Journal of CO2 Utilization* **68**, (2023).
- 30. Chen, L., Liu, D. & Wei, G. Performance of Na-Ru/Al₂O₃ dual function material for integrated CO₂ capture and methanation with the presence of coal ashes. *Energy Convers Manag* **299**, (2024).
- 31. Jeong-Potter, C. & Farrauto, R. Feasibility Study of Combining Direct Air Capture of CO₂ and Methanation at Isothermal Conditions with Dual Function Materials. *Appl Catal B* **282**, (2021).
- 32. Faria, A. C. *et al.* Cyclic operation of CO₂ capture and conversion into methane on Ni-hydrotalcite based dual function materials (DFMs). *Journal of CO2 Utilization* **72**, (2023).
- 33. Sun, H. *et al.* Understanding the interaction between active sites and sorbents during the integrated carbon capture and utilization process. *Fuel* **286**, (2021).
- 34. Onrubia-Calvo, J. A., Pereda-Ayo, B., González-Marcos, J. A. & González-Velasco, J. R. Lanthanum partial substitution by basic cations in LaNiO₃/CeO₂ precursors to raise DFM performance for integrated CO₂ capture and methanation. *Journal of CO2 Utilization* **81**, (2024).
- 35. Wei, L. *et al.* Nitrate-promoted gas–solid reactions of H₂ and CaCO₃ for mid-temperature integrated CO₂ capture and methanation. *Chemical Engineering Journal* **493**, (2024).
- 36. Tsiotsias, A. I. *et al.* CO₂ capture and methanation using Ru/Na₂O/Al₂O₃ dual-function materials: Effect of support synthesis method and Ru load. *J Environ Chem Eng* **12**, (2024).
- Huang, P., Chu, J., Zhang, Z., Zhao, C. & Guo, Y. Optimizing alkali metal Salt-Induced structural assembly of Ni-MgO dual function materials for enhanced CO₂ capture and methanation performance. *Chem Eng Sci* 294, (2024).
- 38. Miyazaki, S. *et al.* Continuous CO₂ Capture and Selective Hydrogenation to CO over Na-Promoted Pt Nanoparticles on Al₂O₃. *ACS Catal* **12**, 2639–2650 (2022).
- 39. Li, L. *et al.* Rb-Ni/Al₂O₃ as dual functional material for continuous CO₂ capture and selective hydrogenation to CO. *Chemical Engineering Journal* **477**, (2023).
- 40. Bobadilla, L. F., Riesco-García, J. M., Penelás-Pérez, G. & Urakawa, A. Enabling continuous capture and catalytic conversion of flue gas CO₂ to syngas in one process. *Journal of CO2 Utilization* **14**, 106–111 (2016).
- 41. Sun, H. *et al.* Dual functional catalytic materials of Ni over Ce-modified CaO sorbents for integrated CO₂

capture and conversion. Appl Catal B 244, 63-75 (2019).

- 42. Shao, B. *et al.* Heterojunction-redox catalysts of Fe_xCo_yMg₁₀CaO for high-temperature CO₂ capture and in situ conversion in the context of green manufacturing. *Energy Environ Sci* **14**, 2291–2301 (2021).
- 43. Wang, G. *et al.* Ni-CaO dual function materials prepared by different synthetic modes for integrated CO₂ capture and conversion. *Chemical Engineering Journal* **428**, (2022).
- 44. Ma, X. *et al.* Metal oxide-doped Ni/CaO dual-function materials for integrated CO₂ capture and conversion: Performance and mechanism. *AIChE Journal* **69**, (2023).
- 45. Hyakutake, T., Van Beek, W. & Urakawa, A. Unravelling the nature, evolution and spatial gradients of active species and active sites in the catalyst bed of unpromoted and K/Ba-promoted Cu/Al₂O₃ during CO₂ capture-reduction. *J Mater Chem A Mater* **4**, 6878–6885 (2016).
- 46. Sasayama, T. *et al.* Integrated CO₂ capture and selective conversion to syngas using transition-metal-free Na/Al₂O₃ dual-function material. *Journal of CO2 Utilization* **60**, (2022).
- 47. Sun, S. *et al.* Integrated CO₂ capture and utilization with CaO-alone for high purity syngas production. *Carbon Capture Science and Technology* **1**, (2021).
- 48. Jo, S. Bin *et al.* CO₂ green technologies in CO₂ capture and direct utilization processes: methanation, reverse water-gas shift, and dry reforming of methane. *Sustain Energy Fuels* **4**, 5543–5549 (2020).
- 49. Hu, Y. *et al.* MxOy (M = Mg, Zr, La, Ce) modified Ni/CaO dual functional materials for combined CO2 capture and hydrogenation. *Int J Hydrogen Energy* **48**, 24871–24883 (2023).