SUPPLEMENTARY INFORMATION

Bifunctional Na-Ru on gamma-alumina for CO2 capture from air and conversion to CH4: impact of regeneration method and supporting on monolithic contactors

Enrique García-Bordejé^a, José María Conesa, Antonio Guerrero-Ruiz^{c,d}, Inmaculada Rodríguez-Ramos^b

^a Instituto de Carboquímica (ICB-CSIC), Miguel Luesma Castán 4, E-50018 Zaragoza, Spain,

^b Instituto de Catálisis y Petroleoquímica (CSIC), 28049, Madrid, Spain

^c Departamento de Química Inorgánica y Química Técnica, UNED, 28040, Madrid, Spain

^d Grupo de Diseño y Aplicación de Catalizadores Heterogéneos, UNED, Unidad Asociada al CSIC por el ICP, Spain

Figure S1. N₂ adsorption isotherms and pore size distribution (inset) for the different Na loadings

Figure S2. t-plot analysis of the N2 adsorption isotherm for the different DFMs

a) <u>RuNa (1:2.5)</u>

b) <u>RuNa (1:3.7)</u>

c) <u>RuNa (1:7.4)</u>

d) <u>RuNa (1:10)</u>

e) <u>RuNa (1:14.6)</u>

Figure S3. Representative TEM images and histograms for the DFMs with different Na loadings

Ru Lα1

100nm

100nm

RuNa (1:3.7) Al Kα1 Map Data 2 50m Ru Lα1 Map Data 2 50m Na Kα1_2

٢

50nm

٦

1

50nm

٦

100nm

RuNa (1:10)

Mine, Date 4

ΑΙ Κα1

[100nm]

[100nm]

100nm

d)

Figure S4. EDS mapping of the DFM with different Na loadings

Figure S5. Representative SEM images of a longitudinal cut of a monolith channel coated with Alumina and after impregnation of DFM RuNa (8.3:1): (a) cut of a channel of the monolith; (b) magnification with a detail pointed out with red arrow in Figure S5a

Sample	Coating weight loading	Coating volume loading	BET Surface Area	Total pore vol.	Coating Surface Area	Coating pore vol.
	wt%	g/cm ³	m ² g monol ⁻¹	cm ³ g monol ⁻¹	m ² g ⁻¹	cm ³ g ⁻¹
cordierite	0		0	0	0	0
Al ₂ O ₃ coated cordierite	6.1	0.033	12.9	0.018	215	0.30
DFM RuNa (8.3:1) impregnated Al ₂ O ₃ monolith	6.5	0,035	9.2	0.015	141	0.23

Table S1. N_2 physisorption of the pristine cordierite monoliths, after coating with alumina, and after depositing the Na and Ru