Supplementary information

Molecular topology-driven benzocyclobutene-based ultralow dielectrics with copper-matched low thermal expansion

Menglu Li,^{a,c} Linfeng Fan,^{d,e} Quan Sun,^{a,c} Meng Xie,^{a,c} Jin Guo^{b,c} and Wenxin Fu^{*a,c}

^aKey Laboratory of Science and Technology on High-Tech Polymer Materials, Institute

of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^bState Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry,

Chinese Academy of Sciences, Beijing 100190, China.

^cUniversity of Chinese Academy of Sciences, Beijing 100049, China.

^dBeijing Institute of Space Long March Vehicle, Beijing 100076, China

^eChina Academy of Launch Vehicle Technology, Beijing 100076, China

* E-mail: fuwenxin@iccas.ac.cn

Fig.S1 The ¹H NMR of 4-acetylenyl benzocyclobutene.

Fig.S2 The ¹H NMR of 4-pinacyl borate benzocyclobutene.

Fig.S3 ¹H NMR (A), ¹³C NMR (B) and MALDI-TOF (C) of Ph-BCB.

Fig.S4 ¹H NMR (A), ¹³C NMR (B) and MALDI-TOF (C) of Ph-ene-BCB.

Fig.S5 ¹H NMR (A), ¹³C NMR (B) and MALDI-TOF (C) of Ph-yne-BCB.

Fig.S6 ¹H NMR (A), ¹³C NMR (B) and MALDI-TOF (C) of TPA-yne-BCB.

Fig.S7 ¹H NMR (A), ¹³C NMR (B) and MALDI-TOF (C) of TPB-yne-BCB.

Fig.S8 The WAXS pattern of resins.

Fig.S10 Nanoindentation load-unload curves with displacement into surface of cured resins (a), Ph-BCB (b), Ph-ene-BCB (c), PH-yne-BCB (d), TPA-yne-BCB (e), and TPB-yne-BCB (f).