Supplementary data

Table S1. Comparison of the performance with other reported catalyst				
Catalyst	Conditions	Reaction temperatures/°C	Conversion of NO _x /%	Reference
FeM36 zeolites	NO (800 ppm) O ₂ (3.5 vol%)	150	50	[S1]
CSWB/T	SO ₂ (200 ppm) H ₂ O (5 vol%)	200	65	[S2]
MnFe/TiO ₂ -h-0h	NO (1000 ppm) H ₂ O (2.3 vol%) O ₂ (4 vol%)	150	37	[83]
Cr _{0.0006} Mn _{0.05} CeTiO	NO (500 ppm)	150	83	[S4]
V-Sb/Ti	NO (300 ppm) H ₂ O (5 vol%) O ₂ (5 vol%)	200	68	[85]
r-Fe ₂ O ₃	NO (500 ppm) SO ₂ (100 ppm) O ₂ (5 vol%)	200	80	[S6]
FeW	NO (500 ppm) SO ₂ (200 ppm) O ₂ (3 vol%)	150	18	[S7]
V ₂ O ₅ -MoO ₃ /TiO ₂	NO(700 mg/Nm ³ or 523 ppm) SO ₂ (2000 mg/Nm ³ or 700 ppm) O ₂ (4 vol%)	200	73	This Work
V ₂ O ₅ -MoO ₃ /TiO ₂	NO(500-800 mg/Nm ³ or 370-597 ppm) SO ₂ (35 mg/Nm ³ or 12 ppm) O ₂ (4-6 vol%)	160-180	75	This Work

Figure S1. SEM images.

Figure S2. TEM images.

Figure S3. Plate type catalyst used for 2 years.

Notes and references

[S1] A. Szymaszek-Wawryca, U. Diaz, B. Samojeden, M. Motak, Catalytic Performance of One-Pot Synthesized Fe-MWW Layered Zeolites (MCM-22, MCM-36, and ITQ-2) in Selective Catalytic Reduction of Nitrogen Oxides with Ammonia, *Molecules* 27 (2022) 2983, <u>https://doi.org/10.3390/molecules27092983</u>.

[S2] Q. Jin, M. Chen, X. Tao, B. Lu, J. Shen, Y. Shen, Y. Zeng, Component synergistic catalysis of Ce-Sn-W-Ba- O_x/TiO_2 in selective catalytic reduction of NO with ammonia, *Appl. Surf. Sci.* 512 (2020) 145757, https://doi.org/10.1016/j.apsusc.2020.145757.

[S3] L. Schill, S. S. R. Putluru, R. Fehrmann, A. D. Jensen, Low-Temperature NH₃–SCR of NO on Mesoporous $Mn_{0.6}Fe_{0.4}/TiO_2$ Prepared by a Hydrothermal Method, *Cata. Lett.* 144 (2014) 395-402, https://doi.org/10.1007/s10562-013-1176-2.

[S4] W. Liu, Z. Gao, M. Sun, J. Gao, L. Wang, X. Zhao, R. Yang, L. Yu, One-pot synthesis of $Cr_{\alpha}Mn_{\beta}CeTiO_x$ mixed oxides as NH₃-SCR catalysts with enhanced low-temperature catalytic activity and sulfur resistance, *Chem. Eng. Sci.* 251 (2022) 117450, https://doi.org/10.1016/j.ces.2022.117450.

[S5] Y. K. Bae, T. Kim, J. Kim, Y. Kim, K. Ha, H. Chae, Enhanced SO₂ tolerance of V₂O₅-Sb₂O₃/TiO₂ catalyst for NO reduction with co-use of ammonia and liquid ammonium nitrate, *J. Ind. Eng. Chem.* 96 (2021) 277-283,

https://doi.org/10.1016/j.jiec.2021.01.029.

[S6] Y. Yu, W. Tan, D. An, X. Wang, A. Liu, W. Zou, C. Tang, C. Ge, Q. Tong, J. Sun, L. Dong, Insight into the SO₂ resistance mechanism on γ -Fe₂O₃ catalyst in

NH₃-SCR reaction: A collaborated experimental and DFT study. *Appl. Catal. B.* 281 (2021) 119544, https://doi.org/10.1016/j.apcatb.2020.119544.

[S7] H. Wang, Z. Qu, S. Dong, C. Tang, Mechanistic investigation into the effect of sulfuration on the FeW catalysts for the selective catalytic reduction of NO_x with NH₃. *ACS Appl. Mater. Interfaces* 9 (2017) 7017–7028, https://doi.org/10.1021/acsami.6b14031.