Supplementary Information (SI) for Industrial Chemistry & Materials. This journal is © Institute of Process Engineering of CAS 2025

Efficient stacking of iso-butene in sulfonate functional metal-organic frameworks for

efficient iso-butene/iso-butane separation

Zhensong Qiu,^{†a} Jiyu Cui,^{†a} Dengzhuo Zhou,^a Zhenglu Yang,^{ab} Xiaofei Lu,^b Xian Suo,^b Anyun Zhang,^a Xili Cui,^{ab} Lifeng Yang,^{*ac} Huabin

Xing*^{ab}

^{a.} Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China.

^{b.} ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China.

^{c.} State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.

⁺ These authors contributed equally.

^{*} Corresponding author: <u>lifeng_yang@zju.edu.cn</u>, <u>xinghb@zju.edu.cn</u>

Electronic Supplementary Information (ESI) available: [additional figures, crystal information]. See DOI: 10.1039/x0xx00000x

Fig. S1. Molecular dimensions of (a) $\mathit{iso-C_4H_8}$ and (b) $\mathit{iso-C_4H_{10}}$

Fig. S2. Illustration of the 2D coordination network of ZU-603

Fig. S3. Illustration of the 2D layered structure of ZU-603. (Different colors are used to represent different

layers for clarity)

Fig. S4. $N_{\rm 2}$ adsorption and desorption isotherms of ZU-603 at 77 K

Fig. S5. BET calculation of ZU-603 using the $N_{\rm 2}$ adsorption isotherm at 77 K.

Fig. S6. Thermogravimetric analysis of ZU-603 under nitrogen flow (50-900°C, 10°C min⁻¹).

Fig. S7. SEM image of ZU-603 particles.

Fig. S8. The pure component adsorption and desorption isotherms of *iso*- C_4H_8 and *iso*- C_4H_{10} on ZU-603 at 298 K. (Solid circle, adsorption; empty circle, desorption)

Fig. S9. DSLF fitting of the iso-C₄H₈ adsorption isotherm on ZU-603 at 298 K

Fig. S10. DSLF fitting of the *iso*- C_4H_{10} adsorption isotherm on ZU-603 at 298 K

Fig. S11. Fitting of the time dependent adsorption profiles of *iso*- C_4H_8 on ZU-603 at 298 K using the micropore diffusion model.

Fig. S12. Fitting of the time dependent adsorption profiles of *iso*- C_4H_8 on ZU-603 at 298 K using the micropore diffusion model.

Fig. S13. Snapshots of GCMC simulations of $iso-C_4H_8$ adsorption on ZU-603 at 1 bar. Panels (1) to (10) illustrate increasing steps during the simulation.

Fig. S14. Snapshots of GCMC simulations of *iso*- C_4H_{10} adsorption on ZU-603 at 1 bar. Panels (1) to (10) illustrate increasing steps during the simulation.

Fig. S15. Low energy snapshots of (a) iso- C_4H_8 and (b) iso- C_4H_{10} adsorption on ZU-603 at 1 bar.

Tables:

Materials	ZU-603		
Formula	C22H20CuN4O6S6		
MW (g mol ⁻¹)	692.32		
Crystal system	Triclinic		
Space group	P1		
a (Å)	9.7182(15)		
b (Å)	10.6046(17)		
c (Å)	10.6459(17)		
α (°)	105.398(5)		
β (°)	115.116(4)		
γ (°)	105.493(5)		
Volume (ų)	862.3(2)		
Z	1		
ρ (g cm ⁻³)	1.333		
μ (mm ⁻¹)	1.033		
F (000)	353.0		
Crystal size	0.12 × 0.11 × 0.06		
Radiation	ΜοΚα (λ = 0.71073)		
2θ range for data collection (°)	4.766 to 57.554		
Index ranges	$\textbf{-13} \leq h \leq \textbf{13}, \textbf{-14} \leq k \leq \textbf{11}, \textbf{-13} \leq \textbf{l} \leq \textbf{14}$		
Reflections collected	8247		
Independent reflections	4438 [R _{int} = 0.0356, R _{sigma} = 0.0581]		
Data/restrains/parameters	4438/0/178		
Goodness of fit on F ²	1.026		
Final R indexes [I>=2 σ (I)]	R1 = 0.0403, wR2 = 0.0946		
Final R indexes [all data]	R1 = 0.0525, wR2 = 0.1015		
Largest diff. peak/hole / e Å-3	0.36/-0.55		

Table S1. Crystallographic data of activated ZU-603

Materials	iso-C4H8	iso-C4H10	Uptake ratio
ZU-603	2.100	0.637	3.30
NI-GALLATE ¹	0.043	0.037	1.17
MG-GALLATE ¹	0.087	0.068	1.27
CO-GALLATE ¹	0.106	0.093	1.14
Mn-bpdc ²	0.035	0.032	1.10
ZJNU-30a ³	5.364	7.556	0.71
SD-65 ⁴	0.029	0.022	1.29
ZU-609 ⁵	0.106	0.088	1.20
HKUST-1 ⁶	6.851	5.583	1.23

Table S2. Separation performance comparison of different materials.

References:

- J. Chen, J. Wang, L. Guo, L. Li, Q. Yang, Z. Zhang, Y. Yang, Z. Bao and Q. Ren, Adsorptive Separation of Geometric Isomers of 2-Butene on Gallate-Based Metal–Organic Frameworks, ACS Applied Materials & Interfaces, 2020, 12, 9609-9616.
- 2. W. Lu, H. Huang, Z. Hejin, C. Yanjiao, G. Xiangyu, Y. Fan and C. Zhong, Efficient separation of 1,3butadiene from C4 hydrocarbons by flexible metal–organic framework with gate-opening effect, *AIChE Journal*, 2022, **68**, e17568.
- 3. H. Liu, Y. He, J. Jiao, D. Bai, D.-I. Chen, R. Krishna and B. Chen, A Porous Zirconium-Based Metal-Organic Framework with the Potential for the Separation of Butene Isomers, *Chemistry – A European Journal*, 2016, **22**, 14988-14997.
- 4. K. Kishida, Y. Okumura, Y. Watanabe, M. Mukoyoshi, S. Bracco, A. Comotti, P. Sozzani, S. Horike and S. Kitagawa, Recognition of 1,3-Butadiene by a Porous Coordination Polymer, *Angewandte Chemie International Edition*, 2016, **55**, 13784-13788.
- 5. J. Cui, Z. Qiu, Z. Yang, A. Jin, X. Cui, L. Yang and H. Xing, One-Step Butadiene Purification in a Sulfonate-Functionalized Metal–Organic Framework through Synergistic Separation Mechanism, *Angewandte Chemie International Edition*, 2024, **63**, e202403345.
- 6. M. Hartmann, S. Kunz, D. Himsl, O. Tangermann, S. Ernst and A. Wagener, Adsorptive Separation of Isobutene and Isobutane on Cu3(BTC)2, *Langmuir*, 2008, **24**, 8634-8642.