Supplementary information

Sequential separation of multi-isotopes from limited samples through a two-step column chromatography apporach

Lei Li^a, Fang Liu^a*, Qingyao Peng^a, Zhaofeng Zhang^a, Xin Li^a, Yajun An^a

^a Research Center for Planetary Science, College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China

Corresponding author. E-mail address: liufang@cdut.edu.cn.

The Supplementary information includes Table S1, S2,S3 and Figure S1.

Sample	$\delta^{44/40}$ Ca	2SD	Reference	⁸⁷ Sr/ ⁸⁶ Sr	2SE	Reference
NOD-A-1	1.19	0.05	This Study	0.709227	0.000006	This Study
	1.14	0.11	Liu et al. ¹			
	1.02	0.15	Feng et al. ²			
COQ-1	0.71	0.13	This Study	0.703311	0.000004	This Study
	0.71	0.11	Feng et al. ²	0.703319	0.000015	Bellefroid et al. ³
	0.74	0.13	Liu et al. ¹	0.703293	0.000009	Kochergina et al.4
AGV-2	0.76	0.04	This Study	0.704005	0.000007	This Study
	0.71	0.11	Liu et al. ¹	0.704000	0.000014	Yu et al. ⁵
	0.79	0.09	Feng et al. ²	0.704020	0.000020	Andersen et al. ⁶
BHVO-2	0.81	0.04	This Study	0.703543	0.000005	This Study
	0.80	0.10	Liu et al. ¹	0.703503	0.000013	Cheng et al. ⁷
	0.84	0.07	Zhu et al. ⁸	0.703493	0.000011	Liu et al. ¹
GSP-2	0.28	0.06	This Study	0.764964	0.000006	This Study
	0.25	0.06	Liu et al. ¹	0.764962	0.000034	Raczek et al.9
	0.30	0.03	He et al. ¹⁰	0.764996	0.000019	Sun et al. ¹¹
CUG-1A	0.72	0.05	This Study	0.705825	0.000004	This Study
CUG-1B	0.72	0.02	This Study	0.703344	0.000005	This Study
915a	0.03	0.09	This Study			
	0.00	0.03	Amini et al. ¹²			
	0.02	0.13	Kang et al. ¹³			
IAPSO	1.87	0.13	This Study			
seawater	1.82	0.12	Liu et al. ¹			
	1.83	0.01	Zhu. ¹⁴			
NBS987				0.710234	0.000005	This Study
				0.710231	0.000013	Niu et al. ¹⁵
				0.710234	0.000006	Zhang et al. ¹⁶

Table S1. The isotopic compositions of Ca and Sr of standards and simulated lunar soil samples.

Sample	$\begin{array}{c} \delta^{137/134}Ba\\ \pm 2SD\%\end{array}$	$\begin{array}{l} \delta^{138/134}Ba\\ \pm 2SD\%\end{array}$	Reference	δ ^{142/140} Ce	2SD	Reference	$\delta^{146/144}Nd$	2SE	$\delta^{148/144}Nd$	2SE	Reference	¹⁴³ Nd/ ¹⁴⁴ Nd	Reference
NOD-A-1	0.11±0.02	0.14 ± 0.01	This Study	0.107	0.036	This Study	0.038	0.007	0.096	0.012	This Study	0.512130 ± 4	This Study
				0.131	0.042	Bai et al. ¹⁷	0.043	0.007	0.079	0.012	Liu et al. ¹⁸	0.512128 ± 3	Liu et al.18
				0.104	0.022	Liu et al. ¹⁹	-0.015	0.028			Bai et al. ²⁰	0.512136 ± 5	Bai et al. ²⁰
COQ-1	0.06±0.02	0.07 ± 0.00	This Study	0.022	0.032	This Study	-0.068	0.006	-0.151	0.010	This Study	0.512827 ± 5	This Study
	0.08 ± 0.04	0.10 ^a	Zeng et al. ²¹	-0.018	0.042	Bai et al. ¹⁷	-0.080	0.007	-0.140	0.012	Liu et al. ¹⁸	0.512816 ± 3	Liu et al. ¹⁸
				0.042	0.028	Nakada et al. ²²							
AGV-2	0.00±0.01	0.01 ± 0.00	This Study	0.004	0.031	This Study	-0.029	0.007	-0.053	0.011	This Study	0.512787 ± 4	This Study
	0.03ª	0.05 ± 0.01	Deng et al.23	0.000	0.046	Bai et al. ¹⁷	-0.029	0.007	-0.049	0.012	Liu et al. ¹⁸	0.512784 ± 3	Liu et al. ¹⁸
				-0.009	0.028	Nakada et al. ²²	-0.014	0.030			Bai et al. ²⁰	0.512786 ± 10	Bai et al. ²⁰
BHVO-2	0.04±0.03	0.03 ± 0.04	This Study	-0.028	0.026	This Study	-0.041	0.005	-0.077	0.008	This Study	0.512972 ± 4	This Study
	0.02±0.03	0.03 ^a	Li et al. ²⁴	0.004	0.040	Nakada et al. ²²	-0.041	0.007	-0.057	0.011	Liu et al. ¹⁸	0.512979 ± 4	Liu et al. ¹⁸
	0.01±0.04	$0.02{\pm}0.03$	An et al. ²⁵	-0.019	0.036	Liu et al. ¹⁹	-0.030	0.030			Bai et al. ²⁰	0.512987 ± 17	Bai et al. ²⁰
GSP-2	-0.04±0.02	-0.04 ± 0.03	This Study	0.005	0.013	This Study	-0.055	0.007	-0.095	0.010	This Study	0.511386 ± 3	This Study
	0.00±0.03	0.00^{a}	Nan et al. ²⁶	0.022	0.035	Bai et al. ¹⁷	-0.044	0.007	-0.067	0.012	Liu et al. ¹⁸	0.511380 ± 3	Liu et al. ¹⁸
	-0.01±0.03	0.00 ± 0.03	Deng et al.27				-0.063	0.031			Bai et al. ²⁰	0.511361 ± 9	Bai et al. ²⁰
CUG-1A	0.03±0.03	0.02 ± 0.03	This Study	0.006	0.014	This Study	-0.051	0.005	-0.082	0.008	This Study	0.512555 ± 4	This Study
CUG-1B	0.09±0.02	0.09±0.01	This Study	0.023	0.023	This Study	-0.027	0.005	-0.052	0.009	This Study	0.512964 ± 3	This Study
USTC-Ba		0.09 ± 0.01	Nan et al. ²⁶										
ICPUS-Ba		-0.03±0.01	Nan et al. ²⁶										
CDUT-Ce				0.117	0.033	This Study							
				0.118	0.033	Liu et al. ¹⁹							
				0.129	0.041	Bai et al. ¹⁷							
JMC304				0.006	0.036	This Study							
				0.005	0.038	Liu et al. ¹⁹							
							-0.002	0.016	-0.005	0.035	This Study	0.512104 ± 7	This Study
JNdi-1							0.001	0.005	-0.005	0.008	Liu et al. ¹⁸	0.512110 ± 5	Liu et al. ¹⁸
												0.512104 ± 8	Bai et al. ²⁰

Elements	unit	NOD-A-1	COQ-1	AGV-2	BHVO-2	GSP-2	CUG-1A	CUG-1B	CE-5
SiO ₂	wt.%	3.81	3.54	59.14	49.60	66.60	49.33	47.77	41.25
MgO	wt.%	4.76	1.20	1.79	7.23	0.96	7.94	9.89	6.52
Al_2O_3	wt.%	3.87	0.37	16.91	13.44	14.90	15.34	14.21	11.55
CaO	wt.%	15.40	48.55	5.15	11.40	2.10	7.02	7.38	11.64
TiO ₂	wt.%	0.53	0.15	1.05	2.73	0.66	2.12	1.75	5.12
Fe ₂ O ₃	wt.%	15.60	2.94	6.09	12.30	4.90	11.94	11.22	22.70
Na ₂ O	wt.%	1.00	0.10	4.19	2.22	2.78	3.64	4.59	0.46
K ₂ O	wt.%	0.60	0.16	2.88	0.52	5.38	2.01	2.27	0.21
MnO	wt %	4 76	1 20	1 79	7.23	0.96	0.17	0.16	0.21
P ₂ O ₂	wt %	1.70	2.58	0.48	0.27	0.29	0.49	0.75	0.20
1205	wt.70	76.0	2.50	11.0	1.5	36.0	10.1	0.75	15 /
Li Be	µg/g µg/g	70.0 5.6	1.4 1.2	23	4.5 1 1	1.5	16	9.0 2.6	2.8
Sc	μg/g μσ/σ	12.2	3.0	13.0	32.3	6.3	17.3	14.8	62 9
V	μα/σ	770	110	120	317	52	144	11.0	93
Ċr	μα/σ	21	10	120	280	20	272	355	1459
Co	н е в це/е	3110	4	15	45	<u>-</u> ° 7	45	46	37
Ni	188 ug/g	5548	3	19	120	17	202	296	139
Cu	μg/g	1100	3	53	123	43	40	38	12
Zn	µg/g	587	87	86	101	120	96	118	14
Ga	μg/g	6.3	6.0	20.0	20.6	22.0	19.0	22.4	5.8
Rb	μg/g	10.6	14.6	68.0	9.8	245.0	58.0	38.7	5.2
Sr	µg∕g	1748	12000	658	389	240	648	971	313
Y	µg/g	116	81	20	23	28	25	22	116
Zr	µg/g	328	65	232	169	550	203	241	545
Nb	µg/g	43	3900	15	18	27	50	70	36
Mo	µg/g	364.00	7.40	2.00	4.07	2.10	1.91	1.91	0.03
Cs	µg/g	0.56	0.36	1.17	0.10	1.20	0.90	0.62	0.22
Ba	µg/g	1670	1000	1140	130	1340	699	389	395
La	µg/g	112.0	750.0	38.2	15.2	180.0	40.2	44.4	35.4
Ce	µg/g	720	1700	69	38	410	77	82	99
Pr	µg∕g	24.3	150.0	8.2	5.3	51.0	8.5	9.0	12.7
Nd	µg∕g	93.0	412.0	30.5	24.3	200.0	32.6	35.1	59.3
Sm	$\mu g/g$	19.8	50.0	5.5	6.0	27.0	6.4	7.3	17.0
Eu	µg/g	5.20	15.00	1.55	2.04	2.30	2.05	2.36	2.77
Gd	µg/g	24.90	50.00	4.68	6.21	12.00	5.77	6.43	19.60
Tb	µg/g	3.90	3.93	0.65	0.94	1.09	0.84	0.89	3.27
Dy	µg/g	23.50	18.60	3.55	5.28	6.10	4.66	4.60	20.50

Table S3. The main and trace data of rock standard samples and simulated lunar soils. (Rock standard data are cited from http://georem.mpch-mainz.gwdg.de; The data of simulated lunar soils CUG-1A and CUG-1B were cited from Li et al. ²⁸; Chang'e 5 soil data are cited from Zong et al.²⁹)

Но	µg/g	4.90	3.29	0.68	0.99	1.00	0.86	0.76	4.07
Er	µg/g	14.07	8.07	1.83	2.51	2.20	2.35	1.85	11.30
Tm	$\mu g/g$	2.00	1.07	0.26	0.33	0.29	0.32	0.23	1.57
Yb	µg/g	13.80	5.90	1.65	1.99	1.60	1.95	1.27	9.90
Lu	$\mu g/g$	2.20	0.73	0.25	0.28	0.23	0.29	0.17	1.36
Hf	$\mu g/g$	4.0	0.2	5.1	4.5	14.0	4.6	5.2	14.0
Та	$\mu g/g$	0.76	8.50	0.87	1.15	0.43	2.77	3.97	1.83
Pb	$\mu g/g$	846.0	4.3	13.1	1.7	42.0	6.9	3.9	0.1
Th	$\mu g/g$	23.40	10.60	6.17	1.22	105.00	6.04	5.64	0.28
U	µg/g	7.00	11.20	1.89	0.41	2.40	1.31	1.74	0.08

Figure S1. The three-isotope plot for Ba and Nd isotopes of all samples analyzed in this study. The graph shows the mass-dependent covariant relationship between $\delta^{138/134}$ Ba $-\delta^{137/134}$ Ba and $\delta^{148/144}$ Nd $-\delta^{146/144}$ Nd. The dashed red lines represent the theoretical mass fractionation line, with slopes of 1.33 and 1.9687, respectively.

References

- 1. F. Liu, H. L. Zhu, X. Li, G. Q. Wang and Z. F. Zhang, *Geostandards and Geoanalytical Research*, 2017, **41**, 675-688.
- L. p. Feng, L. Zhou, L. Yang, D. J. DePaolo, S. Y. Tong, Y. S. Liu, T. L. Owens and S. Gao, *Geostandards and Geoanalytical Research*, 2016, 41, 93-106.
- 3. E. J. Bellefroid, N. J. Planavsky, N. R. Miller, U. Brand and C. Wang, *Chemical Geology*, 2018, **497**, 88-99.
- 4. Y. V. E. Kochergina, V. Erban and J. M. Hora, *Journal of Geosciences*, 2022, DOI: 10.3190/jgeosci.357, 273-285.
- 5. K. Yu, Y. Liu, Q. Hu, M. N. Ducea, Z. Hu, K. Zong and H. Chen, *Journal of Petrology*, 2018, **59**, 795-824.
- 6. N. L. Andersen, B. S. Singer, B. R. Jicha, B. L. Beard, C. M. Johnson and J. M. Licciardi, *Journal of Petrology*, 2017, **58**, 85-114.
- 7. Z. Cheng, Z. Zhang, T. Hou, M. Santosh, L. Chen, S. Ke and L. Xu, *Geochimica et Cosmochimica Acta*, 2017, **202**, 159-178.
- H. Zhu, F. Liu, X. Li and Z. Zhang, *Journal of Analytical Atomic Spectrometry*, 2018, 33, 547-554.
- 9. I. Raczek, B. Stoll, A. W. Hofmann and K. P. Jochum, 2003.
- 10. Y. He, Y. Wang, C. Zhu, S. Huang and S. Li, *Geostandards and Geoanalytical Research*, 2016, **41**, 283-302.
- J.-F. Sun, J.-H. Zhang, J.-H. Yang, Y.-H. Yang and S. Chen, *Lithos*, 2019, **334-335**, 42-57.
- 12. M. R. Amini, N. Usunier and C. Goutte, *Advances in Neural Information Process* Systems, 2009.
- 13. J.-T. Kang, H.-L. Zhu, Y.-F. Liu, F. Liu, F. Wu, Y.-T. Hao, X.-C. Zhi, Z.-F. Zhang and F. Huang, *Geochimica et Cosmochimica Acta*, 2016, **179**, 312-314.
- 14. H. Zhu, Graduate School of the Chinese Academy of Sciences (Guangzhou Institute of Geochemistry), 2016.
- 15. X. L. Niu, B. Chen, A. K. Liu, K. Suzuki and X. Ma, *Lithos*, 2012, **149**, 146-158.
- Y.-h. Zhang, H.-w. Cao, S. P. Hollis, L. Tang, M. Xu, J.-s. Jiang, S.-b. Gao and Y.-s. Wang, *International Geology Review*, 2018, 61, 868-894.
- 17. J.-H. Bai, J.-L. Ma, G.-J. Wei, L. Zhang and S.-X. Zhong, *Journal of Analytical Atomic Spectrometry*, 2022, **37**, 1618-1628.
- 18. F. Liu, X. Li, H. Yang, Q. Peng, J. Wu and Z. Zhang, *Journal of Analytical Atomic Spectrometry*, 2023, **38**, 2581-2589.
- 19. F. Liu, M. Ling, Z. Zhang, W. Lu, J. Xu, X. Li, D. Yang, J. Wu and H. Yang, *Chemical Geology*, 2023, **637**.
- 20. J. H. Bai, F. Liu, Z. F. Zhang, J. L. Ma, L. Zhang, Y. F. Liu, S. X. Zhong and G. J. Wei, *Journal of Analytical Atomic Spectrometry*, 2021, **36**, 2695-2703.
- 21. Z. Zeng, X. Li, Y. Liu, F. Huang and H. M. Yu, *Geostandards and Geoanalytical Research*, 2019, **43**, 291-300.
- 22. R. Nakada, N. Asakura and K. Nagaishi, *Geochemical Journal*, 2019, **53**, 293-304.
- 23. G. Deng, D. Jiang, R. Zhang, J. Huang, X. Zhang and F. Huang, *Earth and Planetary*

Science Letters, 2022, 594.

- 24. W.-Y. Li, H.-M. Yu, J. Xu, R. Halama, K. Bell, X.-Y. Nan and F. Huang, *Geochimica et Cosmochimica Acta*, 2020, **278**, 235-243.
- 25. Y. J. An, X. Li and Z. F. Zhang, *Geostandards and Geoanalytical Research*, 2019, **44**, 183-199.
- 26. X. Nan, F. Wu, Z. Zhang, Z. Hou, F. Huang and H. Yu, *Journal of Analytical Atomic Spectrometry*, 2015, **30**, 2307-2315.
- 27. G. Deng, J. Kang, X. Nan, Y. Li, J. Guo, X. Ding and F. Huang, *Geochimica et Cosmochimica Acta*, 2021, **292**, 115-129.
- 28. J. W. Li, K. Q. Zong, Q. He, Z. C. Wang and Z. C. Hu, *Journal of Nanjing University* (*Natural Science Edition*), 2021, **57**, 944-956.
- K. Zong, Z. Wang, J. Li, Q. He, Y. Li, H. Becker, W. Zhang, Z. Hu, T. He, K. Cao, Z. She, X. Wu, L. Xiao and Y. Liu, *Geochimica et Cosmochimica Acta*, 2022, 335, 284-296.