Supplementary Information (SI) for JAAS. This journal is © The Royal Society of Chemistry 2025

Supplementary material

Table S1. Instrument and experimental parameters of laser ablation and MC-ICPMS.

Fig. S1. Summary of laser ablation MC-ICPMS *Neptune* measurements of ⁸⁴Sr/⁸⁶Sr ratio: (a) ⁸⁴Sr/⁸⁶Sr vs. ⁸²X/⁸⁶Sr; High ⁸⁴Sr/⁸⁶Sr values result from Ca dimer/argide interferences. Green crosses represent corrected data; (b) Enlargement of the main dataset marked by the black rectangle in (a); (c) Beta fractionation factor vs. ⁸⁴Sr/⁸⁶Sr, elevated values are due to dimer/argide interferences; (d) Natural logarithm of measured ⁸⁴Sr/⁸⁶Sr_m vs. natural logarithm of measured ⁸⁸Sr/⁸⁶Sr_m (m denotes ratios corrected for amplifier gains, baseline, and interferences), shows a fractionation trend, slightly deviating from the exponential mass bias law.

Fig. S2. Summary of laser ablation MC-ICPMS *Neoma* measurements of Sr isotopic composition of a modern shark enamel with H-type cones, a) ⁸⁷Sr/⁸⁶Sr vs. ⁸⁴Sr/⁸⁶Sr, b) measured ⁸⁵Rb/⁸⁶Sr_m vs. ⁸⁷Sr/⁸⁶Sr c) ⁸⁷Sr/⁸⁶Sr vs. ⁸²X/⁸⁶Sr Ca dimer/argide monitor, d) ⁸⁴Sr/⁸⁶Sr vs. ⁸²X/⁸⁶Sr, e) ⁸⁷Sr/⁸⁶Sr vs. Beta fractionation factor, f) natural logs of the measured ⁸⁴Sr/⁸⁶Sr_m vs. natural log of the measured ⁸⁸Sr/⁸⁶Sr_m comparing the estimated gradient with the gradient predicted by the exponential mass bias law. Gradient uncertainty is 2SD, m denotes ratios corrected for amplifier gains, baseline, and interferences.