#### **Supplementary Information**

# Cost-effective oxygen flask combustion and electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry as green and white method for multielemental determination in food

Augustin Catalin Mot,<sup>a</sup> Adrian-Ioan Dudu,<sup>a,b</sup> Tiberiu Frentiu,<sup>a,c</sup> Dorin Petreus,<sup>d</sup> Erika-Andrea Levei,<sup>e</sup> Zamfira Stupar,<sup>e</sup> Maria Frentiu,<sup>e</sup> Eniko Covaci<sup>a,c,\*</sup>

#### This online resource contains the following data:

- 1. Total carbon, total inorganic carbon and total organic carbon fractions in the solid food samples and absorbing liquid/suspension after oxygen flask combustion
- 2. Calibration curves obtained by SSETV- $\mu$ CCP-OES method for different number of integrating pixels of the signal over the spectral line profile
- 3. Dependence of signal-to-background ratio, relative standard deviation of the background and LODs *versus* the number of integrating pixels of the signal over the spectral line profile
- 4. Colours of the (OFC)-SSETV- $\mu$ CCP-OES method in comparison with traditional spectrometric methods

<sup>&</sup>lt;sup>a</sup> Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, 400028 Cluj-Napoca, Romania, eniko.covaci@ubbclui.ro:

<sup>&</sup>lt;sup>b</sup> Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany Janos 11, 400028, Cluj-Napoca, Romania

<sup>&</sup>lt;sup>c</sup> Babeş-Bolyai University, Research Center for Advanced Analysis, Instrumentation and Chemometrics, Arany Janos 11, 400028 Cluj-Nanoca, Romania:

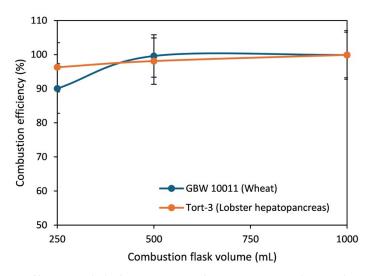
<sup>&</sup>lt;sup>d</sup> Technical University of Cluj-Napoca, Faculty of Electronics, Telecommunications and Information Technology, Gheorghe Baritiu 26-28, 400027 Cluj-Napoca, Romania;

e National Institute for Research and Development of Optoelectronics INOE 2000, Research Institute for Analytical Instrumentation subsidiary, Donath 67, 400293 Cluj-Napoca, Romania

#### 1. Total carbon, total inorganic carbon and total organic carbon fractions in the solid food samples and absorbing liquid/suspension after oxygen flask combustion

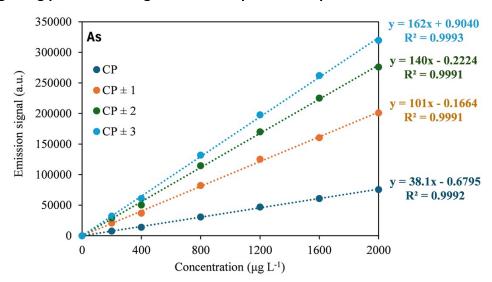
Table S1. Concentration of total carbon (TC), total inorganic carbon (TIC) and total organic carbon (TOC) in food sample and absorbing liquid/suspension

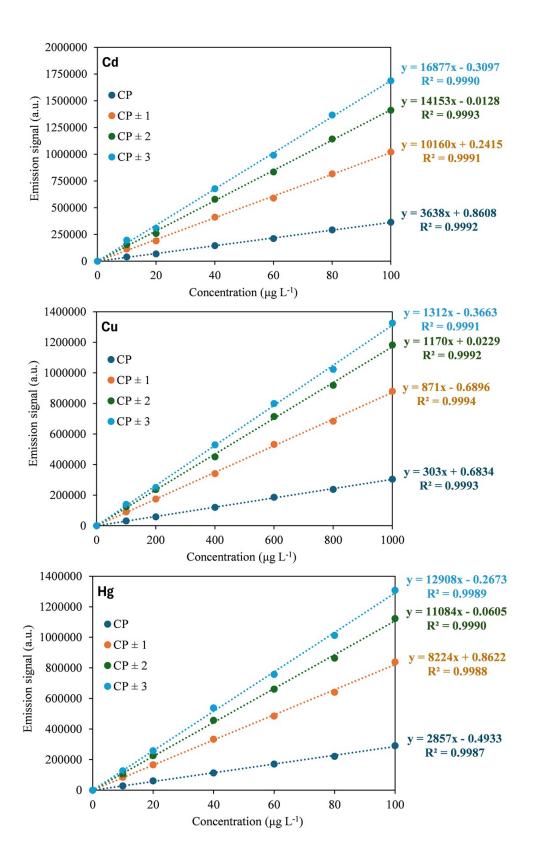
| Sample                           | Carbon frac            | tions in food san | nple ± SDª | Carbon fract | Carbon fraction in liquid sample/suspension |               |            |  |  |
|----------------------------------|------------------------|-------------------|------------|--------------|---------------------------------------------|---------------|------------|--|--|
|                                  | (μg mg <sup>-1</sup> ) |                   |            | after combus | efficiency (%)b                             |               |            |  |  |
|                                  | TC                     | TIC               | TOC        | TC           | TIC                                         | TOC           | -          |  |  |
| CRMs                             |                        |                   |            |              |                                             |               |            |  |  |
| Tort-3 (Lobster hepatopancreas)  | 482 ± 15               | 158 ± 27          | 324 ± 22   | 50.2 ± 0.9   | 19.7 ± 3.0                                  | 30.5 ± 3.1    | 98.1 ± 6.8 |  |  |
| CE278k (Mussel tissue)           | 436 ± 27               | 66 ± 32           | 370 ± 17   | 9.8 ± 0.5    | $7.3 \pm 1.0$                               | 2.5 ± 1.1     | 99.9 ± 4.6 |  |  |
| CS-M-3 (Dried mushroom powder)   | 445 ± 25               | 19 ± 31           | 426 ± 19   | 8.7 ± 0.2    | 6.2 ± 0.5                                   | 2.5 ± 0.5     | 99.9 ± 4.5 |  |  |
| GBW 10011 (Wheat)                | 395 ± 25               | 25 ± 34           | 370 ± 23   | 10.6 ± 0.9   | $8.0 \pm 0.8$                               | 2.6 ± 1.2     | 99.6 ± 6.2 |  |  |
| SRM 3280 (Multivitamin tablets)  | 129 ± 7                | 3 ± 9             | 126 ± 6    | 15.9 ± 0.9   | 13.2 ± 0.8                                  | 2.7 ± 1.2     | 99.6 ± 4.8 |  |  |
| Food and supplement samples      |                        |                   |            |              |                                             |               |            |  |  |
| Fish tissue 1                    | 537 ± 33               | 175 ± 39          | 362 ± 21   | 20.3 ± 1.3   | 14.0 ± 1.5                                  | $6.3 \pm 2.0$ | 99.7 ± 5.8 |  |  |
| Fish tissue 2                    | 495 ± 24               | 177 ± 31          | 318 ± 19   | 18.4 ± 1.1   | 13.1 ± 0.8                                  | 5.3 ± 1.4     | 99.7 ± 6.0 |  |  |
| Mushroom 1                       | 409 ± 27               | 2 ± 37            | 407 ± 26   | 8.2 ± 0.9    | 6.2 ± 0.6                                   | 2.0 ± 1.1     | 99.9 ± 6.4 |  |  |
| Mushroom 2                       | 464 ± 30               | 67 ± 41           | 397 ± 28   | 19.3 ± 0.8   | 16.7 ± 0.9                                  | 2.6 ± 1.2     | 99.9 ± 7.1 |  |  |
| Mushroom 3                       | 438 ± 31               | 34 ± 40           | 404 ± 25   | 24.3 ± 1.1   | 20.2 ± 0.8                                  | 4.1 ± 1.4     | 99.8 ± 6.2 |  |  |
| Mushroom 4                       | 451 ± 29               | 38 ± 38           | 413 ± 24   | 15.9 ± 0.8   | 14.2 ± 0.5                                  | 1.7 ± 0.9     | 99.9 ± 5.8 |  |  |
| Supplement 1                     | 693 ± 51               | 353 ± 53          | 340 ± 16   | 9.2 ± 0.8    | $6.0 \pm 0.9$                               | 3.2 ± 1.2     | 99.8 ± 4.7 |  |  |
| Supplement 2                     | 636 ± 43               | 346 ± 46          | 290 ± 16   | 8.7 ± 1.1    | 5.8 ± 0.8                                   | 2.9 ± 1.4     | 99.8 ± 5.5 |  |  |
| Supplement 3                     | 164 ± 7                | 68 ± 8            | 96 ± 4     | 8.3 ± 0.6    | 6.1 ± 0.6                                   | 2.2 ± 0.9     | 99.5 ± 4.2 |  |  |
| Pooled combustion efficiency (%) |                        |                   |            |              |                                             |               | 99.7 ± 5.7 |  |  |

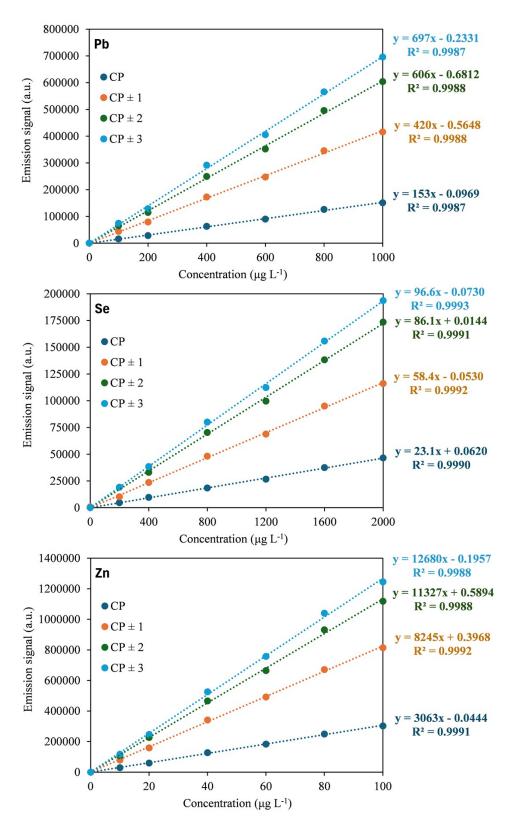

<sup>&</sup>lt;sup>a</sup>SD is the standard deviation calculated from n = 3 repeated measurements;

$$\frac{m_{TOC food sample} - m_{TOC suspension}}{2} \times 100$$

<sup>b</sup>Combustion efficiency (%) was calculated as

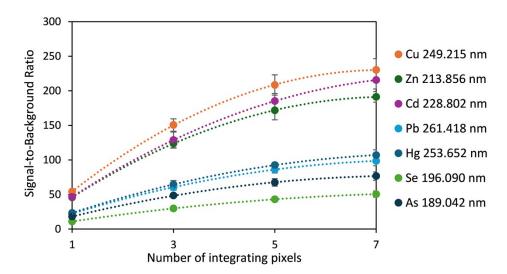

 $m_{TOC\ food\ sample}$ 


for 50 mg sample and 500 mL flask combustion.

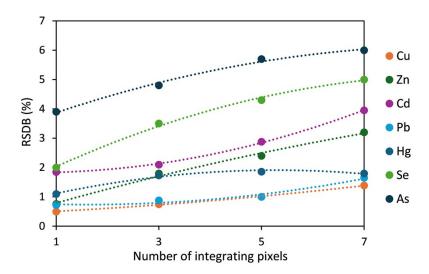



**Fig. S1**. Combustion efficiency (%) for 50 mg of GBW 10011 (Wheat) and TORT-3 (Lobster hepatopancreas) in flasks of 250, 500 and 1000 mL. Error bars correspond to relative standard deviation for n = 3 repeated measurements

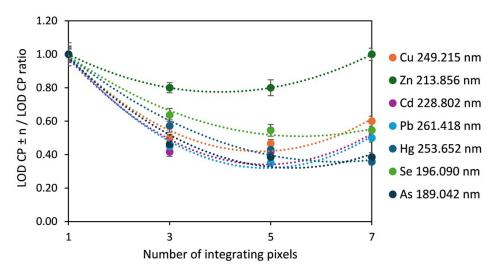
## 2. Calibration curves obtained by SSETV- $\mu$ CCP-OES method for different number of integrating pixels of the signal over the spectral line profile





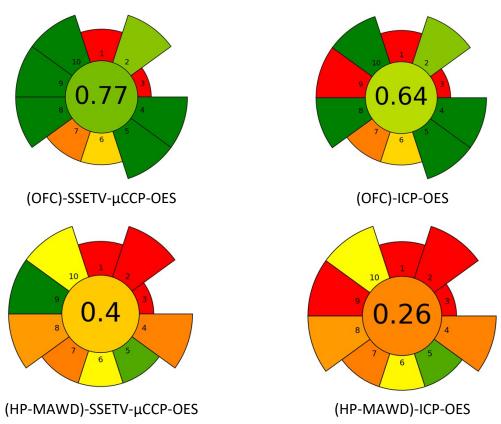




**Fig. S2.** Calibration curves obtained by SSETV- $\mu$ CCP-OES method for different number of pixels used for signal integration over the spectral line profile (CP is the signal corresponding to the Central Pixel of the spectral line,  $\pm$  1;  $\pm$  2 and  $\pm$  3 corresponds to signals over the spectral line profile against CP)


## 3. Dependence of signal-to-background ratio, relative standard deviation of the background and LODs *versus* the number of integrating pixels of the signal over the spectral line profile



**Fig. S3.** Dependence of SBR in the SSETV- $\mu$ CCP-OES method for different number of integrating pixels of the signal over the spectral profiles at the most sensitive lines of elements. Element concentrations (mg L<sup>-1</sup>): 0.1 (Cd, Hg and Zn), 1 (Cu, Pb) and 2 (As, Se). Error bars correspond to standard deviation for n = 3 repeated measurements




**Fig. S4.** Dependence of RSDB in the SSETV- $\mu$ CCP-OES method for different number of integrating pixels of the signal over the spectral profiles of the most sensitive lines. Element concentrations (mg L<sup>-1</sup>): 0.1 (Cd, Hg and Zn), 1 (Cu, Pb) and 2 (As, Se)



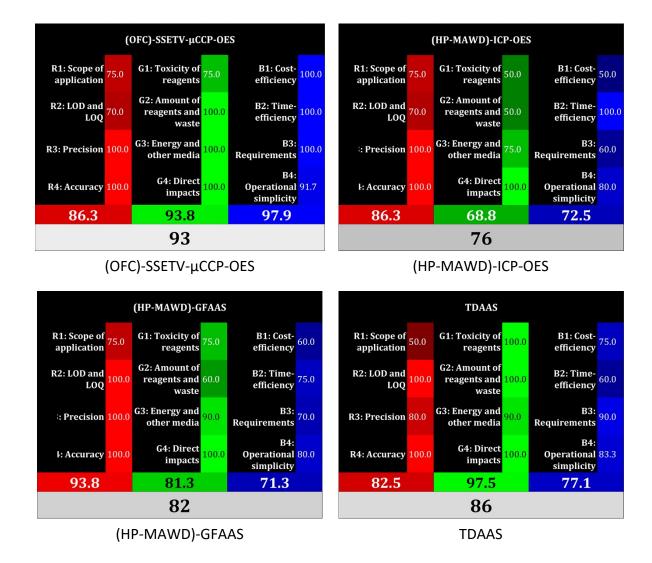
**Fig. S5.** Improvement of instrumental LODs in the SSETV- $\mu$ CCP-OES method *versus* the number of integrating pixels of the signal over the spectral profile of the most sensitive lines. Error bars correspond to standard deviation for n = 3 repeated measurements.

### 4. Colours of the (OFC)-SSETV- $\mu$ CCP-OES method in comparison with traditional spectrometric methods



**Fig. S6**. The greenness of the (OFC)-SSETV- $\mu$ CCP-OES method evaluated by the AGREEprep metric in comparison with (OFC)-ICP-OES, (HP-MAWD)-SSETV- $\mu$ CCP-OES and (HP-MAWD)-ICP-OES methods. The assessment criteria, weight and inputs are presented in Table S2.

**Table S2**. Inputs used to assign the AGREEprep scores for the (OFC)-SSETV-μCCP-OES method in comparison with (OFC)-ICP-OES, (HP-MAWD)-SSETV-μCCP-OES and (HP-MAWD)-ICP-OES


| As  | sessment criteria                                                   | Method   |                                                                                                      |          |                                                                                                     |         |                                                                                                      |                   |                                                                                                     |  |
|-----|---------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------|--|
|     |                                                                     | (OFC)-SS | ETV-μCCP-OES                                                                                         | (OFC)-IC | P-OES                                                                                               | (HP-MA) | WD)-SSETV-μCCP-OES                                                                                   | (HP-MAWD)-ICP-OES |                                                                                                     |  |
|     |                                                                     | Weight   | Input                                                                                                | Weight   | Input                                                                                               | Weight  | Input                                                                                                | Weight            | Input                                                                                               |  |
| 1.  | Sample<br>preparation<br>placement                                  | 3        | Ex-situ (in the lab)                                                                                 | 3        | Ex-situ (in the lab)                                                                                | 3       | Ex-situ (in the lab)                                                                                 | 3                 | Ex-situ (in the lab)                                                                                |  |
| 2.  | Hazardous<br>materials                                              | 5        | 0.063 g concentrated HNO <sub>3</sub>                                                                | 5        | 0.063 g concentrated<br>HNO <sub>3</sub>                                                            | 5       | 9 g HNO <sub>3</sub> + 1 g H <sub>2</sub> O <sub>2</sub>                                             | 5                 | 9 g HNO <sub>3</sub> + 1 g H <sub>2</sub> O <sub>2</sub>                                            |  |
| 3.  | Sustainability,<br>renewability, and<br>reusability of<br>materials | 1        | < 25% of reagents and<br>materials are sustainable<br>or renewable, but can only<br>be used once     | 1        | < 25% of reagents and<br>materials are<br>sustainable or<br>renewable, but can<br>only be used once | 1       | < 25% of reagents and<br>materials are sustainable<br>or renewable, but can only<br>be used once     | 1                 | < 25% of reagents and<br>materials are<br>sustainable or<br>renewable, but can<br>only be used once |  |
| 4.  | Waste                                                               | 5        | 0.063 g concentrated HNO <sub>3</sub>                                                                | 5        | 0.063 g concentrated HNO <sub>3</sub>                                                               | 5       | 9 g HNO <sub>3</sub> + 1 g H <sub>2</sub> O <sub>2</sub>                                             | 5                 | 9 g HNO <sub>3</sub> + 1 g H <sub>2</sub> O <sub>2</sub>                                            |  |
| 5.  | Size economy of the samples                                         | 5        | 0.050 g sample                                                                                       | 5        | 0.050 g sample                                                                                      | 3       | 0.3 g sample                                                                                         | 3                 | 0.3 g sample                                                                                        |  |
| 6.  | Sample throughput                                                   | 3        | 6 samples/h                                                                                          | 3        | 6 samples/h                                                                                         | 3       | 8 samples/h                                                                                          | 3                 | 8 samples/h                                                                                         |  |
| 7.  | Integration and automation                                          | 3        | 2 steps in the sample preparation, manual system                                                     | 3        | 2 steps in the sample preparation, manual system                                                    | 3       | 2 steps in the sample preparation, manual system                                                     | 3                 | 2 steps in the sample preparation, manual system                                                    |  |
| 8.  | Energy<br>consumption                                               | 5        | ~ 0 Wh for OFC                                                                                       | 5        | ~ 0 Wh for OFC                                                                                      | 5       | ~ 150 Wh for sample digestion                                                                        | 5                 | ~ 150 Wh for sample digestion                                                                       |  |
| 9.  | Post-sample preparation configuration for analysis                  | 5        | Simple, readily available detection: miniaturized instrumentation with low energy and Ar consumption | 5        | Advanced OES with high energy and Ar consumption: ICP-OES                                           | 5       | Simple, readily available detection: miniaturized instrumentation with low energy and Ar consumption | 5                 | Advanced OES with high energy and Ar consumption: ICP-OES                                           |  |
| 10. | Operator's safety                                                   | 5        | No hazards or no exposure                                                                            | 5        | No hazards or no exposure                                                                           | 5       | 2 Hazards                                                                                            | 5                 | 2 Hazards                                                                                           |  |

**Table S3**. Evaluation tables by the RGB 12 algorithm for the (OFC)-SSETV- $\mu$ CCP-OES method in comparison with (HP-MAWD)-ICP-OES, (HP-MAWD)-GFAAS and TDAAS

|                   |                  |                      | R1: Scope of application | R2: LOD and LOQ                |                                | R3: Precision |                         |                           | R4: Accuracy |                    |              |       |
|-------------------|------------------|----------------------|--------------------------|--------------------------------|--------------------------------|---------------|-------------------------|---------------------------|--------------|--------------------|--------------|-------|
| RED<br>PRINCIPLES | Method<br>number | Method name          | 0-100                    | LOD                            | LOQ                            | 0-100         | RSD%<br>(repeatability) | RSD%<br>(reproducibility) | 0-100        | Relative error (%) | Recovery (%) | 0-100 |
| (analytical       | 1                | (OFC)-SSETV-μCCP-OES | 75                       | 0.01-1.2 mg kg <sup>-1</sup>   | 0.03-4.0 mg kg <sup>-1</sup>   | 70            | 4.6-14.5                | -                         | 100          | -                  | 92-113       | 100   |
| performance)      | 2                | (HP-MAWD)-ICP-OES    | 75                       | 0.04-0.85 mg kg <sup>-1</sup>  | 0.13-2.80 mg kg <sup>-1</sup>  | 70            | 6.7-13.7                | -                         | 100          | -                  | 91-111       | 100   |
|                   | 3                | (HP-MAWD)-GFAAS      | 75                       | 0.006-0.03 mg kg <sup>-1</sup> | 0.020-0.10 mg kg <sup>-1</sup> | 100           | 4.1-11.8                | -                         | 100          | -                  | 85-107       | 100   |
|                   | 4                | TDAAS                | 50                       | 0.004 mg kg <sup>-1</sup>      | 0.013 mg kg <sup>-1</sup>      | 100           | 24                      | -                         | 80           | -                  | 92-108       | 100   |

|                         |                  |                      | G1: Toxicity of reagents (impact and biodegradation) |       | G2: Amount of reagents and waste |                  |       | G3: Consumption of energy and other media | G4: Direct impacts (safety, use of animals and GMOs) |                               |                                    | s)                                   |
|-------------------------|------------------|----------------------|------------------------------------------------------|-------|----------------------------------|------------------|-------|-------------------------------------------|------------------------------------------------------|-------------------------------|------------------------------------|--------------------------------------|
| GREEN PRINCIPLES (green | Method<br>number | Method name          | Total number of pictograms                           | 0-100 | Reagent consumption              | Waste production | 0-100 | 1-100                                     | Occupational hazards                                 | Safety of<br>users<br>(0-100) | Use of animals (0 if no, 1 if yes) | Use of GMO<br>(0 if no,<br>1 if yes) |
| chemistry)              | 1                | (OFC)-SSETV-μCCP-OES | 3                                                    | 75    | 0.063                            | 0.063            | 100   | 100                                       | -                                                    | 100                           | 0                                  | 0                                    |
|                         | 2                | (HP-MAWD)-ICP-OES    | 9                                                    | 50    | 20                               | 20               | 50    | 75                                        | -                                                    | 100                           | 0                                  | 0                                    |
|                         | 3                | (HP-MAWD)-GFAAS      | 3                                                    | 75    | 10                               | 10               | 60    | 90                                        | -                                                    | 100                           | 0                                  | 0                                    |
|                         | 4                | TDAAS                | 0                                                    | 100   | 0                                | 0                | 100   | 90                                        | -                                                    | 100                           | 0                                  | 0                                    |

| BLUE<br>PRINCIPLES<br>(practical side) |                  |                      | <b>B1: Cost-efficiency</b> |       | B2: Time-efficiency |       | B3: Requiremen     | ts                               |                                                               | B4: Operational simplicity |                                        |                     |
|----------------------------------------|------------------|----------------------|----------------------------|-------|---------------------|-------|--------------------|----------------------------------|---------------------------------------------------------------|----------------------------|----------------------------------------|---------------------|
|                                        | Method<br>number | Method name          | Total cost                 | 0-100 | Speed of analysis   | 0-100 | Sample consumption | Sample<br>consumption<br>(0-100) | Other needs: advanced instruments, skills, facilities (0-100) | Miniaturization (0-100)    | Integration and automatization (0-100) | Portability (0-100) |
|                                        | 1                | (OFC)-SSETV-μCCP-OES | Very low                   | 100   | High                | 100   | 0.05 g             | 100                              | 100                                                           | 100                        | 75                                     | 100                 |
|                                        | 2                | (HP-MAWD)-ICP-OES    | High                       | 50    | High                | 100   | 0.3 g              | 70                               | 50                                                            | 70                         | 100                                    | 70                  |
|                                        | 3                | (HP-MAWD)-GFAAS      | Medium                     | 60    | Medium              | 75    | 0.3 g              | 70                               | 70                                                            | 70                         | 100                                    | 70                  |
|                                        | 4                | TDAAS                | Medium                     | 75    | Medium              | 60    | 0.2 g              | 80                               | 100                                                           | 80                         | 100                                    | 70                  |



**Fig. S7**. The colours of the (OFC)-SSETV- $\mu$ CCP-OES method evaluated by the RGB 12 algorithm in comparison with (HP-MAWD)-ICP-OES, (HP-MAWD)-GFAAS and TDAAS methods. The considered inputs are illustrated in Table S3.