Supplementary Information

Development of on-chip cell domes using Ca–alginate hydrogel shells for non-adherent cell studies

Shinji Sakai,^a Hiroyuki Fujiwara,^a Ryotaro Kazama,^a Riki Toita^{b,c} and Satoshi Fujita^{b,c,d}

^a Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, Japan

^b Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan

^cAIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

^d Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 Japan

Fig. S1. Schematic illustration of alginate immobilisation onto an APS-coated glass plate using water-soluble carbodiimide (WSCD) and N-hydroxysuccinimide (NHS).

Fig. S2. FT-IR spectra of sodium alginate (Na-alginate) and calcium-crosslinked alginate (Ca–alginate). Characteristic absorption bands are observed for hydroxyl (–OH, ~3300 cm⁻¹) and aliphatic C–H (~2920 cm⁻¹) groups. The shift of the asymmetric and symmetric carboxylate stretching bands (from 1615 and 1417 cm⁻¹ in Na-alginate to 1610 and 1424 cm⁻¹ in Ca–alginate, respectively) indicates the formation of ionic crosslinks with calcium ions.