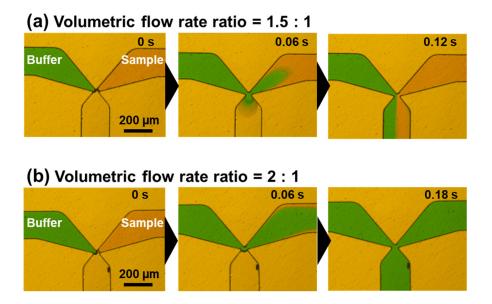
Supplementary Information

Parallel dilution microfluidic device for enabling logarithmic concentration generation in molecular diagnostics


Akira Miyajima^{*a}, Fumiya Nishimura^a, Daigo Natsuhara^{bc}, Yuka Kiba^d, Shunya Okamoto^a, Moeto Nagai^{ae}, Tadashi Yamamuro^f, Masashi Kitamura^d and Takayuki Shibata^{*ae}

- ^a Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
- ^b Institute for Advanced Research (IAR), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
- ^c Department of Materials Process Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
- ^d Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
- ^e Institute for Research on Next-generation Semiconductor and Sensing Science (IRES²), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.

^{*f*} National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan.

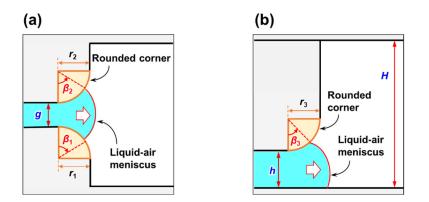
*Corresponding authors:

Akira Miyajima (miyajima.akira.ci@tut.jp), Takayuki Shibata (shibata@me.tut.ac.jp)

Fig. S1 Experimental results showing the flow behavior of two liquids at the Y-junction microchannel (200 and 100 μ m in width and height, respectively), with a minimum width of 32 μ m at the constricted region. Volumetric flow rate ratios of (a) 1.5:1 and (b) 2:1. At a flow rate ratio of 1.5:1, the two liquids flowed into the downstream microchannel below the confluence point within 0.06 s. The dilution buffer slightly backflowed into the sample side. Conversely, at a flow rate ratio of 2:1, the dilution buffer flowed into the sample side after merging and then the sample liquid eventually pushed it back, forming a stable laminar flow in the downstream microchannel after approximately 3 s.

S1. Theoretical burst pressure of passive stop valves

As shown in Fig. S2, when the cross-sectional area of a microchannel expands suddenly, the liquid is pinned near the outlet owing to surface tension. To simplify the theoretical model, assume that the corner radii are $r_1 = r_2 = r$ (i.e., $\beta_1 = \beta_2 = \beta$) and $r_3 = 0$ (i.e., $\beta_3 = 0$) due to considerations of pattern accuracy in the photolithography process. The theoretical burst pressure at the confluent point of a two-heighted Y-junction is described as follows^{1,2}:


$$P_1 = -\gamma \left(\frac{2\cos(\min(\theta_m + \beta, 180^\circ))}{g + 2r(1 - \cos\beta)} + \frac{\cos(\theta_m + 90^\circ) + \cos\theta_f}{H - h} \right)$$
(1)

where g (32 µm) represents the minimum width of the microchannel at the confluent point, H (90 µm) and h (10 µm) denote the heights of the microchannels, ϑ_m is the contact angle of water on the surfaces of the top and sidewalls of the microchannel at the narrow gap (i.e., $\vartheta_m = 108^\circ$ for PDMS), ϑ_f is the contact angle of water on the bottom surface of the microchannel (namely, $\vartheta_f = 102^\circ$ for silicone-based adhesive double-sided tape), γ is the surface tension of the liquid ($\gamma = 0.073$ N/m for water), r (5 µm) is the radius of the rounded corner, and ϑ is the angle between the direction perpendicular to the longitudinal direction of the microchannel and the position of the liquid—air meniscus, which is pinned at the rounded corner. According to the theory, the theoretical burst pressure at a two-heighted Y-junction was estimated to be $P_1 = 12.7$ kPa for water.

Similarly, as there is no step in the microchannel height, the burst pressure at the outlet of each microchamber is simplified from eqn (1) as follows:

$$P_2 = -\gamma \left(\frac{2\cos(\min(\theta_m + \beta, 180^\circ))}{g + 2r(1 - \cos\beta)} + \frac{\cos\theta_m + \cos\theta_f}{h} \right)$$
(2)

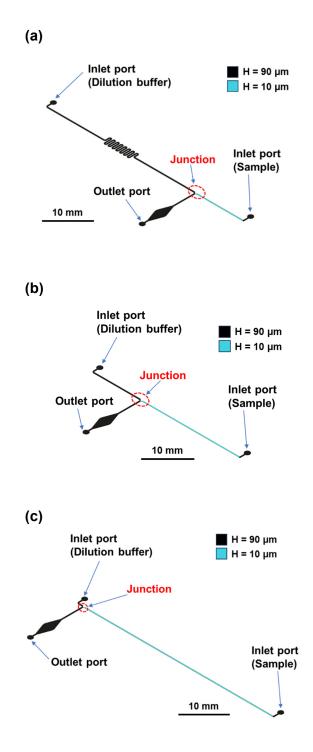

where g (20 µm) and h (10 µm) represent the minimum width and height of the microchannel, respectively and r (5 µm) is the radius of the convex rounded corner. According to eqn (2), the theoretical burst pressure of a permanent stop value at the outlet of each microchamber was estimated to be $P_2 = 9.5$ kPa for water.

Fig. S2 Theoretical model describing the burst pressure. (a) Plan and (b) cross sectional views of the liquid-air meniscus pinned on the back edge of the convex rounded corner.

References

- 1 D. Natsuhara, R. Saito, H, Aonuma, T. Sakurai, S. Okamoto, M. Nagai, H. kanuka and T. Shibata, *Lab Chip*, 2021, **21**, 4779-4790, DOI: 10.1039/d1lc00829c.
- 2 D. Natsuhara, S. Misawa, R. Saito, K. Shirai, S. Okamoto, M. Nagai, M. Kitamura and T. Shibata, *Sci. Rep.*, 2022, **12**, 12852, DOI: 10.1038/s41598-022-16945-2.

Fig. S3 Schematic diagram of the microfluidic device with a microchannel width of 200 μ m and microchannel heights of 90 and 10 μ m on the dilution buffer and sample sides, respectively, designed to evaluate (a) 100-fold, (b) 1,000-fold, and (c) 10,000-fold dilutions of two liquids passing through the two-heighted Y-junction.

S2. Theory for generating logarithmic dilution factors in the microfluidic device

To generate logarithmic dilutions across four orders of magnitude (10–10,000-fold) in the microfluidic device, the flow resistance ratios of microchannels should be optimized for each dilution factor. The theoretical flow resistance R in a rectangular microchannel is expressed by¹:

$$R = \frac{12\eta L}{H^3 W} \left(1 - 0.630 \frac{H}{W} \right)^{-1}$$
(3)

where *W*, *H*, and *L* represent the microchannel's width, height, and length, respectively, and η is the dynamic viscosity of the liquid ($\eta = 1 \text{ mPa} \cdot \text{s}$ for water). Therefore, the flow resistance can be adjusted by the microchannel's height *H* and length *L* under a constant microchannel width (*W* = 200 µm) (Figs. 2 and S3). Additionally, the theoretical volumetric flow rate *Q* can be estimated as follows:

$$Q = \frac{\Delta P}{R} \tag{4}$$

where the theoretical pressure drop ΔP is equivalent to the applied pressure, which is adjusted by two pressurecontrolled micropumps in the two-liquid merging experiments. The calculated theoretical volumetric flow rates of the dilution buffer and sample solutions at each dilution factor at a constant pressure (ΔP = 3.5 kPa) are listed in Table S1. The designed microchannel layout enables the correct flow resistance ratio from the inlet ports to the confluent point on the dilution buffer and sample sides for each dilution factor.

Reference

1 D. Natsuhara, R. Saito, H, Aonuma, T. Sakurai, S. Okamoto, M. Nagai, H. kanuka and T. Shibata, *Lab Chip*, 2021, **21**, 4779-4790, DOI: 10.1039/d1lc00829c.

Table S1 Theoretical volumetric flow rates of the dilution buffer and sample solutions at each dilution factor at a constant pressure (ΔP = 3.5 kPa).

	Dilution buffer	Samp	ole
Microchannel height Η (μm)	90	90	10
Microchannel length L (mm)	299.73	1.00	5.00
Flow resistance <i>R</i> (kPa·min/µL)	5.74×10^{-1}	1.91 × 10 ⁻³	5.16
Volumetric flow rate Q (μL/min)	6.10	0.68	
Flow rate ratio ^a	9.0	1.0	1

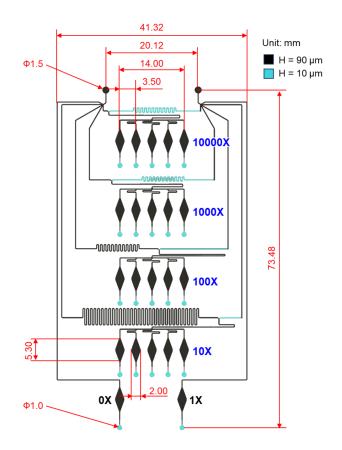
(a) Characteristics of the 10-fold dilution factor in the device as shown in Fig. 2.

(b) Characteristics of the 100-fold dilution factor in the device as shown in Fig. S3a.

	Dilution buffer	San	nple
Microchannel height Η (μm)	90	90	10
Microchannel length L (mm)	54.50	1.00	10.00
Flow resistance R (kPa·min/µL)	1.04×10^{-1}	1.91×10^{-3}	1.03×10^{1}
Volumetric flow rate <i>Q</i> (μL/min)	33.54	0.	34
Flow rate ratio ^a	99.0	1	.0

(c) Characteristics of the 1,000-fold dilution factor in the device as shown in Fig. S3b.

	Dilution buffer	San	nple
Microchannel height H (µm)	90	90	10
Microchannel length L (mm)	10.80	1.00	20.00
Flow resistance <i>R</i> (kPa·min/µL)	2.07×10^{-2}	1.91×10^{-3}	2.07×10^{1}
Volumetric flow rate Q (µL/min)	169.30	0.	17
Flow rate ratio ^a	999.0	1	.0


(d) Characteristics of the 10,000-fold dilution factor in the device as shown in Fig. S3c.

	Dilution buffer	Sam	nple
Microchannel height <i>Η</i> (μm)	90	90	10
Microchannel length L (mm)	2.16	1.00	40.00
Flow resistance <i>R</i> (kPa·min/µL)	4.13×10^{-3}	1.91×10^{-3}	4.13×10^{1}
Volumetric flow rate <i>Q</i> (μL/min)	847.15	0.0	08
Flow rate ratio ^a	9997.1	1.	.0

^a The flow rate ratios were calculated using the values of the volumetric flow rates before rounding to the second decimal place.

Reference

1 E. Yildirim, S. J. Trietsch, J. Joore, A. van den Berg, T. Hankemeiera and P. Vulto, *Lab Chip*, 2014, **14**, 3334-3340, DOI: 10.1039/C4LC00261J.

Fig. S4 Detailed design of the four-stepwise logarithmic parallel dilution microfluidic device (10–10,000-fold) in a single operation. Each dilution factor was generated independently in a parallel microchannel network at a constant pressure.

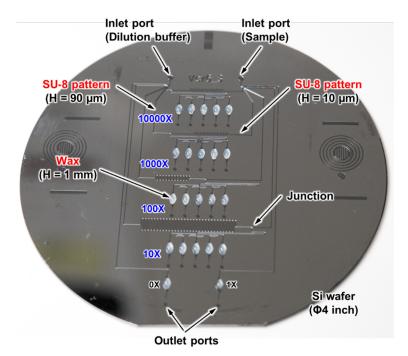
Table S2 Theoretical volumetric flow rates of the dilution buffer and sample solutions at each dilution factor at a constant pressure (ΔP = 7.0 kPa) in the four-stepwise logarithmic dilution device (Fig. S4).

	Dilution buffer	Samp	ble
Microchannel height <i>Η</i> (μm)	90	90	10
Microchannel length L (mm)	305.66	54.91	5.00
Flow resistance <i>R</i> (kPa·min/µL)	5.85×10^{-1}	1.05×10^{-1}	5.16
Volumetric flow rate <i>Q</i> (µL/min)	11.96	1.33	3
Flow rate ratio ^a	9.0	1.0)

(a) Characteristics of the 10-fold dilution factor.

(b) Characteristics of the 100-fold dilution factor.

	Dilution buffer	Sam	nple
Microchannel height <i>Η</i> (μm)	90	90	10
Microchannel length L (mm)	82.05	34.45	15.00
Flow resistance <i>R</i> (kPa·min/µL)	1.57×10^{-1}	6.60×10^{-2}	1.55×10^{1}
Volumetric flow rate <i>Q</i> (µL/min)	44.56	0.4	45
Flow rate ratio ^a	99.0	1.	.0


(c) Characteristics of the 1,000-fold dilution factor.

	Dilution buffer	Sam	nple
Microchannel height Η (μm)	90	90	10
Microchannel length L (mm)	21.61	16.80	40.00
Flow resistance <i>R</i> (kPa·min/µL)	4.14×10^{-2}	3.22×10^{-2}	4.13×10^{1}
Volumetric flow rate <i>Q</i> (μL/min)	169.19	0.:	17
Flow rate ratio ^a	999.1	1.	.0

(d) Characteristics of the 10,000-fold dilution factor.

	Dilution buffer	Sam	nple
Microchannel height Η (μm)	90	90	10
Microchannel length L (mm)	2.16	1.00	40.00
Flow resistance <i>R</i> (kPa·min/µL)	4.13×10^{-3}	1.91×10^{-3}	4.13×10^{1}
Volumetric flow rate <i>Q</i> (μL/min)	1694.30	0.:	17
Flow rate ratio ^a	9997.1	1.	.0

^a The flow rate ratios were calculated using the values of the volumetric flow rates before rounding to the second decimal place.

Fig. S5 Master mold fabricated on a 6-inch Si wafer consisting of two main parts: SU-8 microchannel patterns with heights of 10 and 90 μ m on the sample and dilution buffer sides, respectively, and semi-ellipsoid-shaped wax structures with a uniform shape that create deep localized microchambers (up to 1 mm in depth).

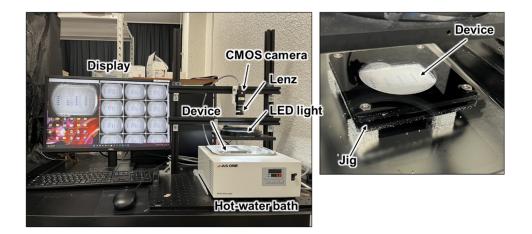
Table S3 Components and volumes used for colorimetric LAMP assays in the four-stepwise logarithmic parallel dilution microfluidic device. Each microchamber has 3 μ L of volume.

Component	Concentration	Volume (µL)
Component	Concentration	volume (µL)
2× Reaction mixture	_	62.5
Bst DNA polymerase	8 U/μL	5.0
DNA tomplato	10 ng/μL (Cannabis seed)	(20, 20) 3
DNA template	8 ng/μL (Cannabis resin)	(20–30) ^a
	FIP 30.8 pmol	
	BIP 30.8 pmol	
Drimer	F3 3.8 pmol	C F
Primer	B3 3.8 pmol	6.5
	LF 15.4 pmol	
	LB 15.4 pmol	
Hydroxynaphthol blue	4.2 mM	4.48
Distilled water	_	34.02
Total		112.5 ^b

^a The DNA template was introduced into the device separately from the LAMP reagents through a different inlet port.

^b Total volume does not include the volume of the DNA template.

Table S4Components and volumes used for conventional off-chip LAMP assays for a cannabis seed performedusing a real-time turbidimeter.


Component	Concentration	Volume (µL)
2× Reaction mixture	-	12.5
3st DNA polymerase	8 U/μL	1.0
DNA towalate	1–1000 pg/µL	2 5
DNA template	(Cannabis seed)	2.5
	FIP 30.8 pmol	
	BIP 30.8 pmol	
Drimon	F3 3.8 pmol	1.2
Primer	B3 3.8 pmol	1.3
	LF 15.4 pmol	
	LB 15.4 pmol	
Distilled water	-	7.7
Total		25.0

Component	Concentration	Volume (µL)
2× Reaction mixture	-	12.5
Bst DNA polymerase	8 U/μL	1.0
	1–1000 pg/µL	2 5
DNA template	(Cannabis resin)	2.5
	FIP 30 pmol	
	BIP 30 pmol	
Drimor	F3 5 pmol	1 0
Primer	B3 5 pmol	1.3
	LF 15 pmol	
	LB 15 pmol	
EvaGreen [®] dye	25 μΜ	1.25
Distilled water	-	6.45
Total		25.0

Table S5Components and volumes used for conventional real-time fluorescent LAMP assays for a cannabis resinperformed using EvaGreen® dye as a fluorescent indicator.

Table S6Components and volumes used for real-time PCR assays for a cannabis resin performed using EvaGreen®dye as a fluorescent indicator.

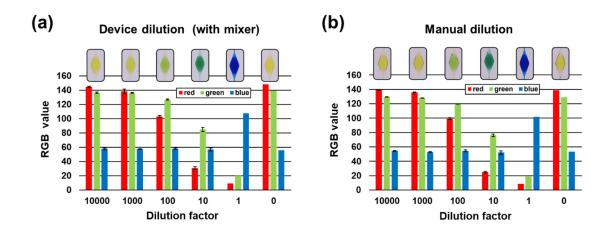

Component	Concentration	Volume (µL)
Taq 2× Master Mix	-	10.0
DNA template	1–1000 pg/μL (Cannabis resin)	2.0
	(, , , , , , , , , , , , , , , , , , ,	0.5
Forward primer	10 µM	0.5
Reverse primer	10 µM	0.5
EvaGreen [®] dye	25 μM	1.0
Distilled water	_	6.0
Total		20.0

Fig. S6 Schematic of the homebuilt time-lapse imaging equipment and the dilution device mechanically clamped with a jig. (a) Photograph of the time-lapse imaging equipment. (b) Photograph of the device clamped with a jig immersed in a hot-water bath during the LAMP assay.

Table S7Absorbance measurements of the diluted solutions generated at each dilution factor. Mean and standarddeviation (SD) values were calculated from five experiment replicates for the device dilution, whereas only a singlereplicate was performed for the manual dilution.

Dilution factor		10X	100X	1000X	10000X
Manual dilution		50.550	7.625	0.858	0.091
Device dilution	Mean value	29.198	3.138	0.824	0.147
	standard deviation	0.132	0.044	0.019	0.014

Fig. S7 Results of image analysis of the mean RGB values obtained from five microchambers at each dilution factor. (a) Device dilution with the micromixer. (b) Manual dilution.

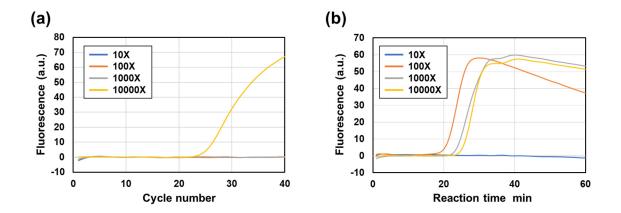
Table S8Comparison of the R/G values between device-based dilutions with the micromixer and manually prepareddilutions.Mean and standard deviation (SD) values were calculated from five experiment replicates for the devicedilution and the manual dilution.

Dilution factor		10X	100X	1000X	10000X
Manual dilution	Mean value	0.327	0.830	1.062	1.075
	standard deviation	0.007	0.008	0.002	0.001
Device dilution	Mean value	0.359	0.813	1.016	1.061
	standard deviation	0.011	0.010	0.021	0.003

Dilution factor	10X	100X	1000X	10000X
DNA concentration (copies/µL)	1.04×10^{3}	1.04×10^{2}	1.04×10^{1}	1.04×10^{0}
Tt value (min)				
Chamber No. 1	19.5	28.9	32.2	n.d.
Chamber No. 2	22.7	25.4	31.3	43.4
Chamber No. 3	22.6	28.9	27.8	n.d.
Chamber No. 4	20.5	25.9	29.2	(53.5) ^a
Chamber No. 5	23.0	24.4	38.7	n.d.
Mean value	21.7	26.7	31.8	43.4
Standard deviation	1.6	2.1	4.2	

Table S9 Tt values obtained from the colorimetric LAMP assay for a cannabis seed using the four-stepwiselogarithmic parallel dilution microfluidic device. Each microchamber has 3 μ L of volume.

^a As the Tt value exceeded 50 min, it was excluded from the data due to the possibility of a false positive.


Table S10 Tt values obtained from conventional off-chip LAMP assays for a cannabis seed using a real-time turbidimeter in a 25-μL reaction volume.

Dilution factor	10X	100X	1000X	10000X
DNA concentration (copies/µL)	1.04×10^{3}	1.04×10^{2}	1.04×10^{1}	1.04×10^{0}
Tt value (min)				
Experiment No. 1	20.8	23.3	27.8	n.d.
Experiment No. 2	21.3	24.7	30.6	32.4
Experiment No. 3	22.0	24.6	29.7	n.d.
Mean value	21.4	24.2	29.4	32.4
Standard deviation	0.6	0.8	1.4	—

Dilution factor	10X	100X	1000X	10000X
DNA concentration (copies/µL)	0.83×10^{3}	0.83×10^{2}	0.83×10^{1}	0.83×10^{0}
Tt value (min)				
Chamber No. 1	n.d.	38.0	25.8	22.3
Chamber No. 2	n.d.	36.5	25.6	22.8
Chamber No. 3	n.d.	31.2	25.3	22.9
Chamber No. 4	n.d.	33.0	25.1	22.4
Chamber No. 5	n.d.	37.2	25.7	25.8
Mean value		35.2	25.5	23.2
Standard deviation		2.9	0.3	1.5

Table S11 Tt values obtained from the colorimetric LAMP assay for a cannabis resin using the four-stepwise logarithmic parallel dilution microfluidic device. Each microchamber has 3 μ L of volume.

^a As the Tt value exceeded 50 min, it was excluded from the data due to the possibility of a false positive.

Fig. S8 DNA amplification curves of cannabis resin DNA samples prepared at dilution factors from 10- to 10,000-fold using (a) real-time PCR (20-µL reaction volume) and (b) real-time fluorescent LAMP (25-µL reaction volume).