Supplementary Material

Fingertip-Chip Sensor Based on Pd Nanocluster Sensitized 3D NiO Nanotube Arrays for Real-time, Selective Methane Detection

Kunmei Yang^{b, 1}, Yue Kang^{a, 1}, Jia Yan^{a, *}, Weihao Fang^c, Jiazhen Zhang^b, Zhilong Song^{a, *}

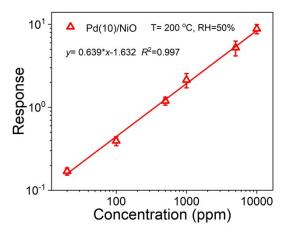


Fig. S1 The theoretical limit of detection (LOD) calculation

The theoretical limit of detection (LOD) is defined as three times the relative standard deviation (σ) of sensor noise divided by the slope of the linear fit (LOD (ppb)=3* σ /slope): LOD=3*0.015/0.639=0.07ppm=70 ppb. The factor 3 corresponds to 99.7% confidence in distinguishing signal from noiseThe σ is the relative standard deviation (RSD) of the baseline noise measured in clean air; and the slope corresponds to the sensitivity of the sensor in ppm⁻¹, which is derived from fitting a linear response region.

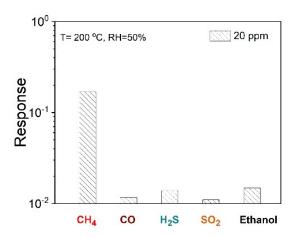


Fig. S2 Selectivity against the interfering gases (@20 ppm)

Table S1 Gas concentration range and sensor verification index

Monitoring scenario	Gas	Ref. Conc	Val. Conc.	Significance	
Natural gas pipeline		Early leakage≤100 ppm	100 ppm	Early leakage of natural gas	
Mine environment	CH₄	Alarm≥5000 ppm	500 ppm	10% of alarm threshold	
		LEL≥50000 ppm	1000 ppm	20% of alarm threshold	
	H₂S	Safety ceiling≤6.6 ppm	\	\	
	со	Safety ceiling≤24 ppm	\	\	

Table S2 CH₄ sensing performance comparison based on typical metal oxide-based gases.

Materials	Temperature	Response	RH	Selectivity	LOD	Ref.
3D Pd/NiO	200°C	1.2@500 ppm	10~85%	H ₂ S, CO, SO ₂ , and ethanol	70 ppb	This work
Ag/ZnO	200°C	<u>19.15@5000</u> ppm	\	CO, NH₃, C ₇ H ₈ , HCHO, CH₃OH	166 ppb	1
Zn₂SnO₄/ZnO	250°C	<u>14.36@400</u> ppm	30%	CO, NH ₃ , H ₂ O	1.48 ppm	2
NiO/ZnO-2	100°C	7.61@5000 ppm	30~80%	CO, H₂S, NH₃, CH₃OH	4 ppm	3
ZnO	RT	<u>0.02@100</u> ppm	25~85%	CO, H ₂ , O ₃	12 ppm	4
Pd/In ₂ O ₃	50°C	14.317@500 ppm	\	CO, NH ₃ , C ₇ H ₈ , HCHO, CH ₃ OH	1.78 ppm	5
Ni/In ₂ O ₃	140°C	<u>71.727@200</u> ppm	20%	CO, C ₇ H ₈ , HCHO, CH₃OH	1600 ppb	6
V ₂ O ₅ /NiO	200°C	<u>0.57@4000</u> ppm	30~70%	H ₂ , CO, SO ₂ , C ₂ H ₆	50 ppm	7

References

- Y. Wang, Y. Cui, X. Meng, Z. Zhang and J. Cao, Surfaces and Interfaces, 2021, 24.
- 2 X. Li, Y. Li, G. Sun, B. Zhang, Y. Wang and Z. Zhang, Sensors and Actuators B: Chemical, 2020, 304.
- 3 X. Sun, M. Li, Y. Wang, C. Qin, J. Cao and Y. Wang, Optical Materials, 2024, 148.
- 4 P. Kumar, Y.-H. Chiu, Z.-I. Deng, U. Kumar, K.-L. Chen, W.-M. Huang and C.-H. Wu, *Applied Surface Science*, 2021, **568**.
- 5 Y. Wang, H. Zhang and J. Cao, *Materials Chemistry and Physics*, 2022, **279**.
- 6 Y. Zhang, J. Cao and Y. Wang, *Vacuum*, 2022, **202**.
- D. Wang, D. Zhang, Y. Li, H. Zhang, L. Lin, X. Zhang, H. Wang and Q. Yu, Sensors and Actuators B: Chemical, 2025, 428, 137261