

Supplementary Information

Poly(lactic-*co*-glycolic acid) for Reagent Storage and Controlled Release in Thermoplastic Microfluidics

Jaesung Lee,^{a,b} Evan H. Benke,^{b,c} Ian M. White,^{b,c} and Don L. DeVoe ^{*a,b,c}

^aDepartment of Mechanical Engineering, University of Maryland, College Park MD

^bFischell Institute for Biomedical Devices, University of Maryland, College Park MD

^cFischell Department of Bioengineering, University of Maryland, College Park MD

Table S1: LAMP primer target sequences (nuc and mecA primer sequences from Zhao 2022, and femB primer sequences from Chen 2017 and Nanayakkara 2019).

Primer	Sequence (5' → 3')
nuc F3	CGATTGATGGTGATACGGTTA
nuc B3	CACGTCATATTATCAGTTCT
nuc FIP	TCTCTACACCTTTAGGATGCTTGTCAAACAATGACATTGAGACT
nuc BIP	TATGGCCTGAAGCAAGTGCACCTTGTCAAACTCGACTTC
nuc Loop B	TACGAAAAAAATGGTAGAAAATGCA
mecA F3	TGATGCTAAAGTTCAAAAGAG
mecA B3	GTAATCTGGAACCTGTTGAG
mecA FIP	TGAAGGTGTGCTTACAAGTGCTAATCAACATGAAAAATGATTATGGCTC
mecA BIP	TGACGTCTATCCATTATGTATGGCAGGTTCTTTTATCTCGGTTA
mecA Loop F	TCACCTGTTGAGGGTGG
femB F3	TGTTTAAATCACATGGTTACGAG
femB B3	TCACGTTCAAGGAATCTGA
femB FIP	TACCTTCAAGGTTAATACGCCATCATGGCTTACAACGTGAG
femB BIP	ACACCCGAAACATTGAAAAAGACACTTTAACACCATAGTTATCGCTT
femB Loop F	TCGTACTTGGCTCGATGTATCATA

Table S2: Lamp reaction buffer composition (20 μL/reaction).

Reagent	Concentration
Trehalose	10% wt
Isothermal amplification buffer (https://www.neb.com/en-us/products/b0537-isothermal-amplification-buffer)	1x
dNTPs (https://www.neb.com/en-us/products/n0447-deoxynucleotide-dntp-solution-mix)	0.6 mM
EvaGreen dye (https://biotium.com/product/evagreen-dye-20x-in-water/)	1x
F3 primer (IDT)	0.2 μM
B3 primer (IDT)	0.2 μM
FIP primer (IDT)	1.6 μM

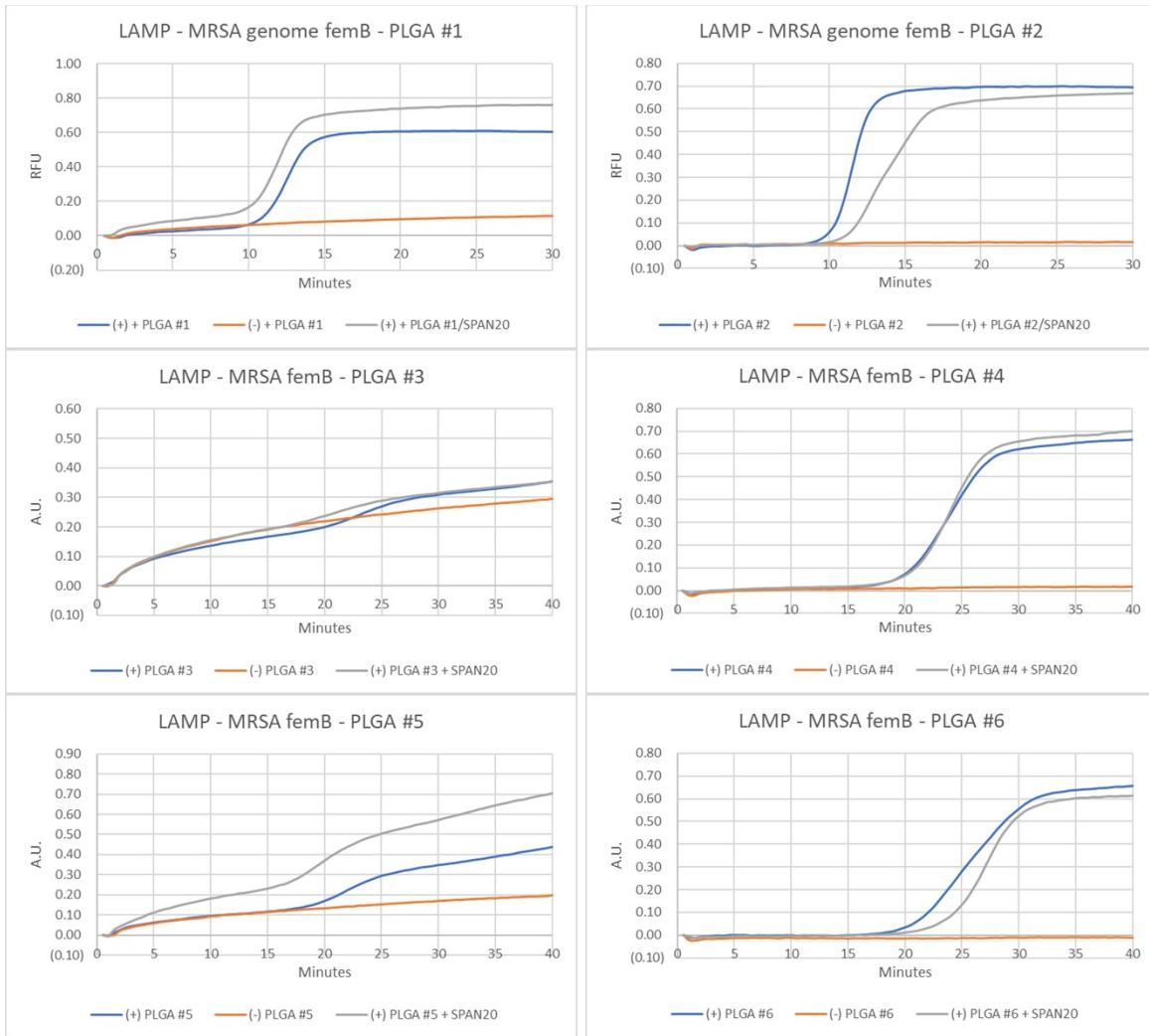

BIP primer (IDT)	1.6 μ M
Loop primer (IDT)	0.8 μ M
BST 2.0 WarmStart DNA polymerase (glycerol free) (New England Biolabs)	6.4 U

Table S3: Composition of on-chip primer deposits for LAMP assays (1.7 μ L/reaction, 2.6x concentrated).

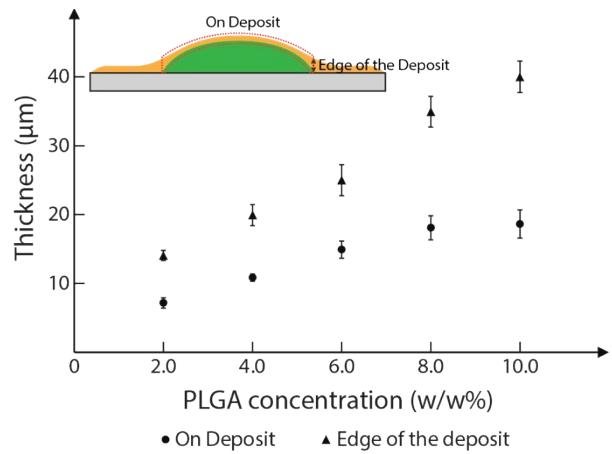
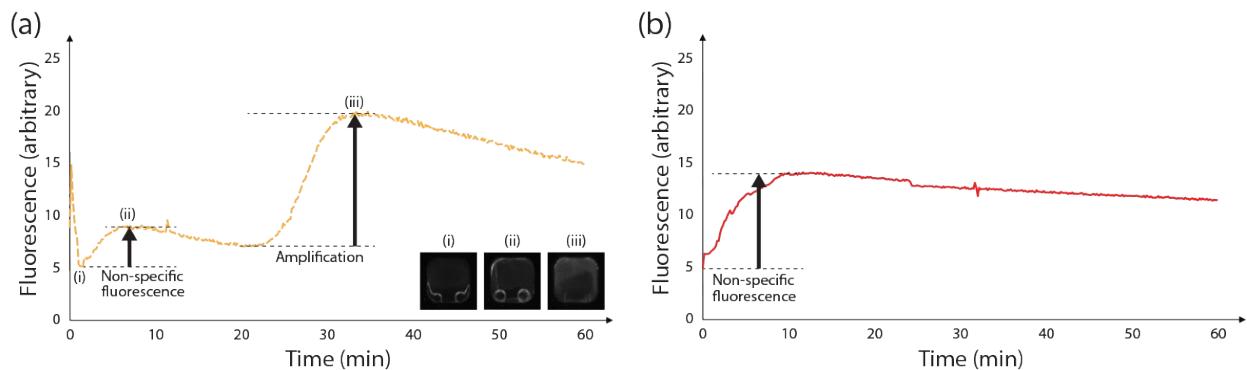
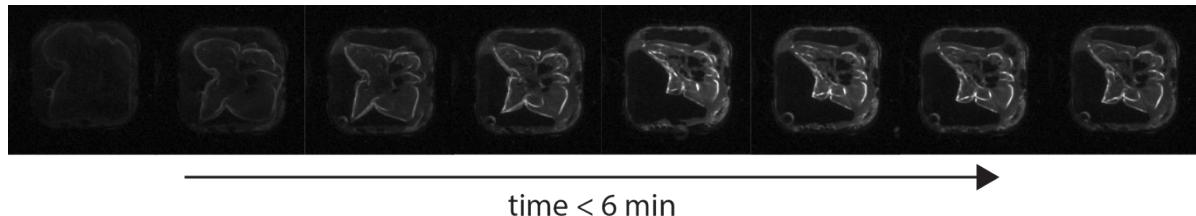

Reagent	Concentration
Trehalose	26% wt
F3 primer (IDT)	0.52 μ M
B3 primer (IDT)	0.52 μ M
FIP primer (IDT)	4.16 μ M
BIP primer (IDT)	4.16 μ M
Loop primer (IDT)	2.08 μ M

Table S4: On-chip LAMP solution (300 μ L/chip)


Reagent	Concentration
BST 2.0 WarmStart DNA polymerase (glycerol free) (New England Biolabs)	96 U
Isothermal amplification buffer	1x
dNTPs	0.6 mM
EvaGreen dye	1x


Figure S1: Six different PLGA compositions were evaluated for potential LAMP inhibition. Primers were deposited at the base of an Eppendorf tube and encapsulated by a PLGA layer via PLGA/acetone solution dispensing and drying. LAMP master mix and MRSA genomic DNA were added to the tube and incubated at 60 °C in a benchtop thermal cycler (Roche LC480). PLGA compositions #1, #2, #4, and #6 terminated with an ester (-COOR), while #3 and #5 terminated with carboxylic acid (-COOH). No inhibition was observed for the ester-terminated PLGAs, while the carboxyl-terminated PLGAs resulted in significant inhibition. Based on these results, an ester-terminated PLGA (90:10, MW≤10k) was used for all further encapsulation and LAMP experiments.

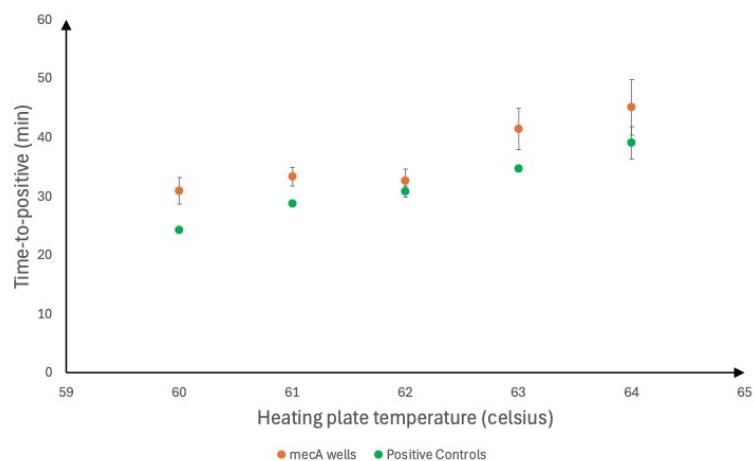

Figure S2: Experimental relationship between PLGA concentration in the initial ethyl acetate solution and final PLGA layer thickness measured at the center and edge of the dried reagent deposit.

Figure S3: (a) On-chip LAMP amplification curve from single well containing PLGA-encapsulated *mecA* primers. A characteristic two-step response is observed, with an early non-specific fluorescence response followed by an increase due to primer-mediated amplification. The steep decrease of fluorescence near $t = 0$ is due to the inherent temperature dependence of EvaGreen fluorescence. Fluorescence images of a *mecA* well of three different time points: (i) the beginning of the incubation, (ii) after non-specific fluorescence was generated, and (iii) after amplification occurred were included. (b) Amplification curve for a negative control, with only a non-specific fluorescence increase observed.

Figure S4: Time-lapse images of a shrinking PLGA layer in a well upon heating at 61 °C. The fluorescence of the PLGA film in the well increases non-specifically upon the start of thermal incubation. The brightness of the photos were enhanced for visibility.

Figure S5: Time-to-positive (TTP) of primer-integrated on-chip LAMP assays for *mecA* and positive controls at various heating plate temperatures.

Note S1: Non-specific fluorescence was observed from the PLGA layer during on-chip LAMP (Figure S2) that was absent in the release rate experiments. To identify the source of this non-specific signal, a set of on-chip reactions were performed at 61 °C using various combinations of LAMP components deposited in the wells and encapsulated with PLGA (✓ = reagent included, X = reagent excluded):

Test #	PLGA	Primers	Polymerase	dNTP	LAMP buffer	EvaGreen	Fluorescence intensity
1	✓	✓	✓	✓	✓	✓	High
2	✓	✓	✓	✓	✓	X	Low
3	✓	✓	✓	✓	X	✓	High
4	✓	✓	✓	X	X	✓	High
5	✓	X	✓	X	X	✓	Medium
6	✓	X	X	X	X	✓	Medium
7	✓	X	X	X	X	X	Low

The measured fluorescence intensity was found to increase in the following order: #2,7 < 5,6 < 1,3,4. Without EvaGreen, the PLGA layer did not generate a meaningful level of fluorescence (tests #2 and 7). A strong increase in non-specific fluorescence occurred only in the presence of both polymerase and primers. We hypothesize that the non-specific fluorescence during the early stage thermal incubation may be caused by preferential residence of EvaGreen in the PLGA layer with help from nucleic acids and polymerase, leading to a reduction in vibrational and rotational freedom of the intercalating dye, and thus an increase in its fluorescence, due to thermal shrinkage of PLGA.

Movie S1: Video showing burst release of fluorescein-labeled DNA encapsulated with PLGA upon heating at 60 °C (1 second movie time corresponds to 1 min real time). The concentration of PLGA/ethyl acetate solution used to form the PLGA layer was 8.0%.