

Supplementary Information for

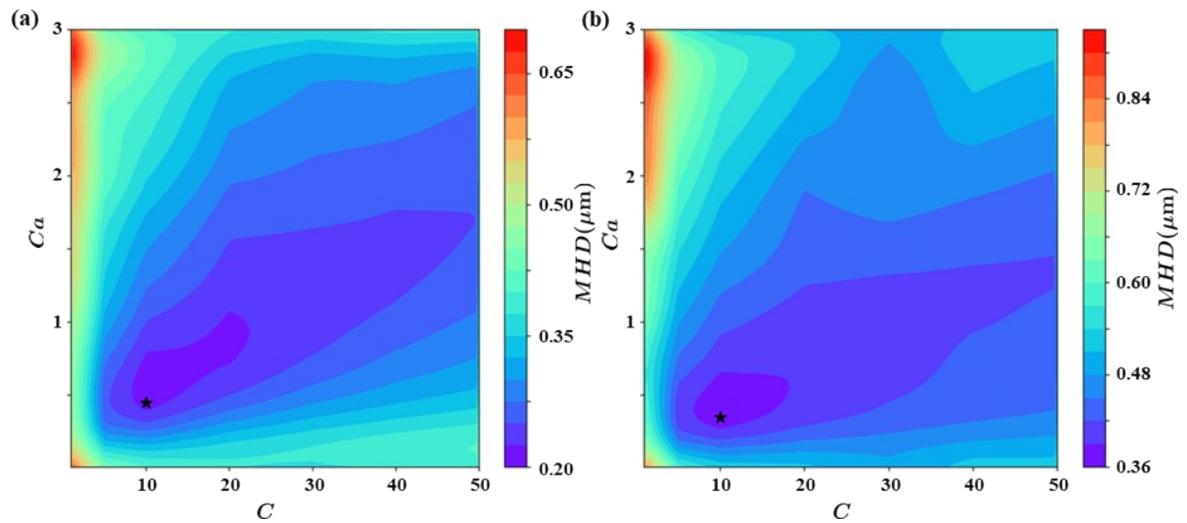
**Real-time high-throughput characterisation of the surface elasticity
of suspended cells**

Ziyu Guo, Yi Sui* and Wen Wang

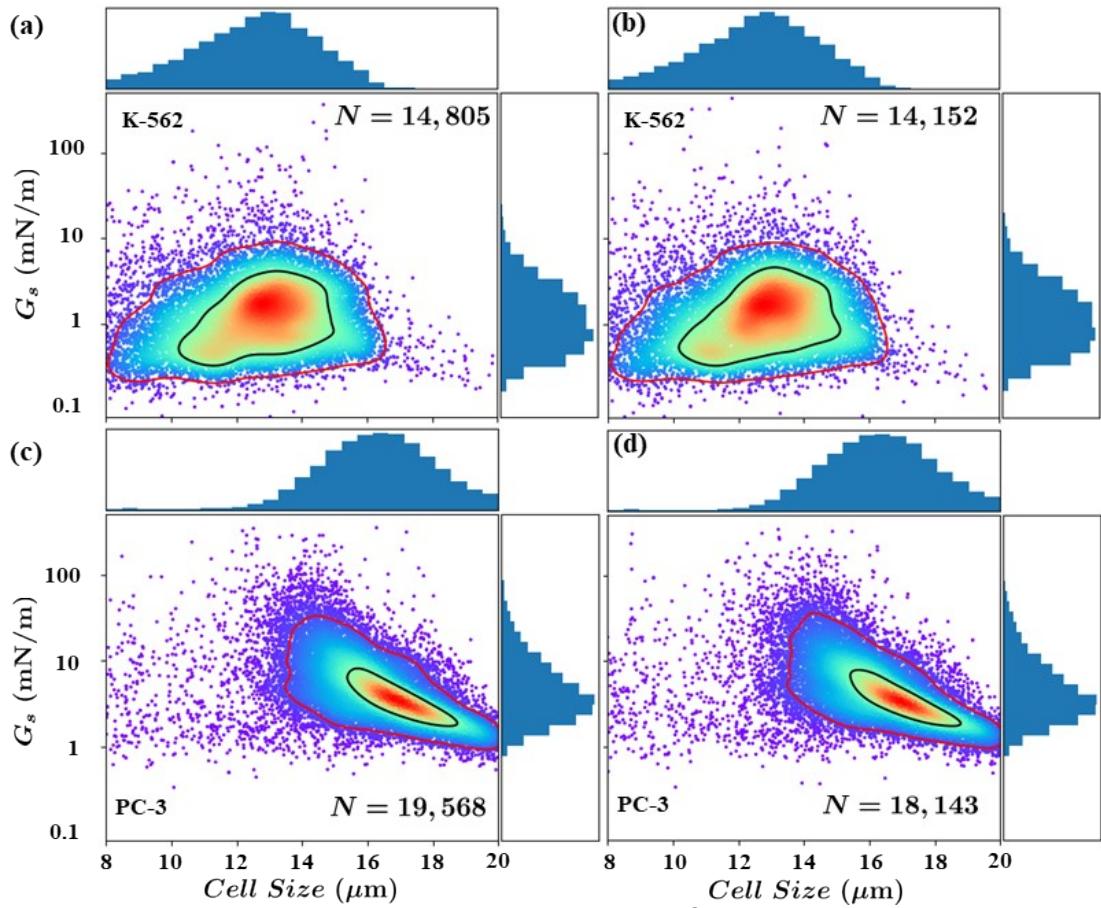
School of Engineering and Materials Science, Queen Mary University of London,

London E1 4NS London, UK

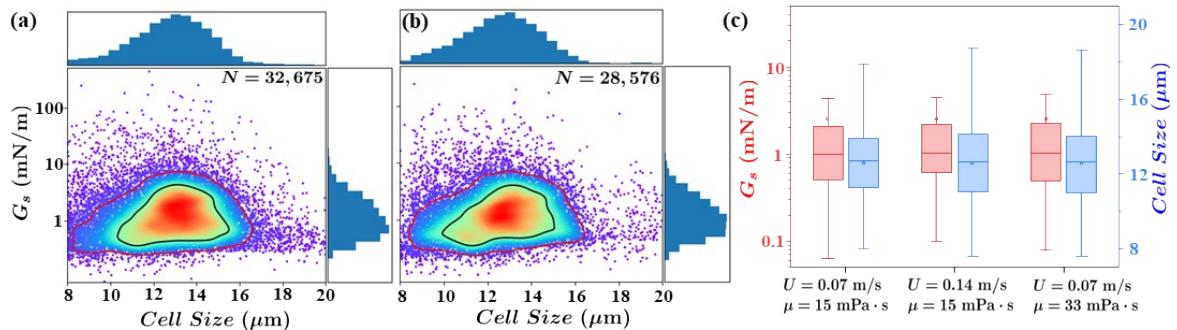
* Corresponding author: y.sui@qmul.ac.uk


(a)

Row \ Column	1	2	3
1	$\beta = 0.83, Ca = 0.45,$ $G_s = 5.3, K_s = 111.1 \text{ mN/m}$	$\beta = 0.82, Ca = 0.25,$ $G_s = 9.5, K_s = 199.9 \text{ mN/m}$	$\beta = 0.81, Ca = 0.15,$ $G_s = 15.9, K_s = 333.2 \text{ mN/m}$
2	$\beta = 0.72, Ca = 0.55,$ $G_s = 4.3, K_s = 90.9 \text{ mN/m}$	$\beta = 0.77, Ca = 0.30,$ $G_s = 7.9, K_s = 166.6 \text{ mN/m}$	$\beta = 0.73, Ca = 0.1,$ $G_s = 23.8, K_s = 499.8 \text{ mN/m}$
3	$\beta = 0.65, Ca = 0.45,$ $G_s = 5.3, K_s = 111.1 \text{ mN/m}$	$\beta = 0.64, Ca = 0.2,$ $G_s = 11.9, K_s = 249.9 \text{ mN/m}$	$\beta = 0.62, Ca = 0.1,$ $G_s = 23.8, K_s = 499.8 \text{ mN/m}$
4	$\beta = 0.55, Ca = 0.55,$ $G_s = 4.3, K_s = 90.9 \text{ mN/m}$	$\beta = 0.53, Ca = 0.30,$ $G_s = 7.9, K_s = 166.6 \text{ mN/m}$	$\beta = 0.5, Ca = 0.05,$ $G_s = 47.6, K_s = 999.6 \text{ mN/m}$
5	$\beta = 0.47, Ca = 0.65,$ $G_s = 3.7, K_s = 76.9 \text{ mN/m}$	$\beta = 0.44, Ca = 0.30,$ $G_s = 7.9, K_s = 166.6 \text{ mN/m}$	$\beta = 0.45, Ca = 0.05,$ $G_s = 47.6, K_s = 999.6 \text{ mN/m}$


(b)

Row \ Column	1	2	3
1	$\beta = 0.81, Ca = 0.50,$ $G_s = 2.0, K_s = 41.2 \text{ mN/m}$	$\beta = 0.85, Ca = 0.30,$ $G_s = 3.3, K_s = 68.6 \text{ mN/m}$	$\beta = 0.81, Ca = 0.10,$ $G_s = 9.8, K_s = 205.8 \text{ mN/m}$
2	$\beta = 0.7, Ca = 0.65,$ $G_s = 1.5, K_s = 31.7 \text{ mN/m}$	$\beta = 0.75, Ca = 0.40,$ $G_s = 2.5, K_s = 51.5 \text{ mN/m}$	$\beta = 0.76, Ca = 0.10,$ $G_s = 9.8, K_s = 205.8 \text{ mN/m}$
3	$\beta = 0.64, Ca = 0.45,$ $G_s = 2.2, K_s = 45.7 \text{ mN/m}$	$\beta = 0.66, Ca = 0.25,$ $G_s = 3.9, K_s = 82.3 \text{ mN/m}$	$\beta = 0.64, Ca = 0.05,$ $G_s = 19.6, K_s = 411.6 \text{ mN/m}$
4	$\beta = 0.55, Ca = 0.55,$ $G_s = 1.8, K_s = 37.4 \text{ mN/m}$	$\beta = 0.56, Ca = 0.40,$ $G_s = 2.5, K_s = 51.5 \text{ mN/m}$	$\beta = 0.50, Ca = 0.10,$ $G_s = 9.8, K_s = 205.8 \text{ mN/m}$
5	$\beta = 0.48, Ca = 0.55,$ $G_s = 1.8, K_s = 37.4 \text{ mN/m}$	$\beta = 0.42, Ca = 0.20,$ $G_s = 4.9, K_s = 102.9 \text{ mN/m}$	$\beta = 0.45, Ca = 0.05,$ $G_s = 19.6, K_s = 411.6 \text{ mN/m}$


Table S1 Best-fit parameters in numerical simulations for the (a) K-562 cells in Fig. 2a and (b) PC-3 cells in Fig. 2b.

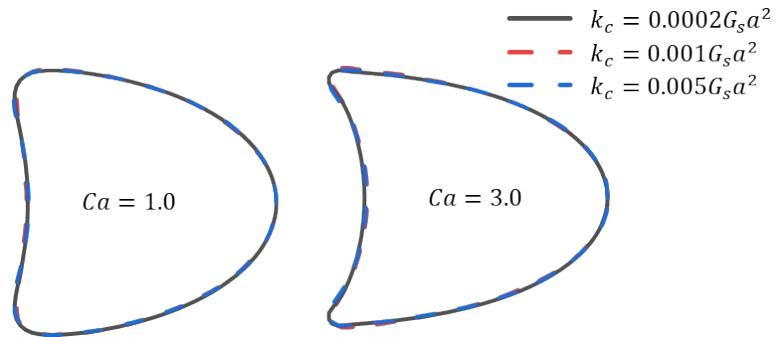

Figure S1 Contour plots of the mean Hausdorff distance (MHD) between steady-deformed cell profiles obtained from numerical simulations and experiments for the (a) K-562 cell of Fig. 2c and (b) PC-3 cell of Fig. 2d. The two stars mark the locations of the minimum MHD, indicating the best fits.

Figure S2 Scatter plots of the surface shear elasticity G_s versus cell size of the (a, b) K-562 cells of Fig. 5a and (c, d) PC-3 cells of Fig. 5b. (a) & (c) are properties of cells measured in the first 2 minutes, and (c) & (d) are measured in the final 2 minutes of the experiments. The results show little time-dependent variations during the \sim 10-minute experiments.

Figure S3 Effects of the flow speed and suspension fluid viscosity on the inferred surface G_s of K-562 cells. Scatter plots of G_s versus size of (a) 32,765 K-562 cells suspended in PBS added with 2% methylcellulose flowing at a speed of 0.14 m/s, and (b) 28,576 K-562 cells suspended in PBS added with 3% methylcellulose flowing at 0.07 m/s. The result of the baseline experiment using the same batch of K-562 cells has been shown in Fig. 5a. (c) Box plots of the surface G_s and size of K-562 cells measured at the three different flow conditions.

Figure S4 Surface bending stiffness of the order of $k_c \sim 0.001G_s a^2$ has little effect on the steady deformation profile of a cell in a microchannel. The confinement ratio is $\beta = 0.6$. This observation is consistent with the results of Dupont et al. (C. Dupont, et al., *Phys. Fluids*, 2015, 27, 051902) about the influence of membrane bending on flow-induced deformation of microcapsules.