Supplementary Information Surface Acoustic Wave-Assisted Swing-Angle Spray: From Mechanism Investigation to Deposition Characteristics and In Vivo Wound Healing

Chenhui Gai^a, Yu Gu^a, Qutong Yang^b, Suxiao Zhao^a, Yizhan Ding^a, Yulin Lei^a,

Junlong Han^{c, *}, Hong Hu^{a, *}, Chen Fu^{b, *}

a School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, 518055, China

b College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China

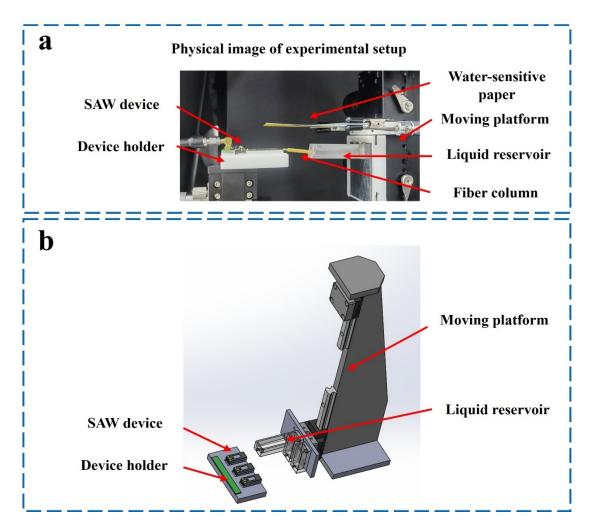
c School of Automotive & Transportation Engineering, Shenzhen Polytechnic
University, Shenzhen, 518055, China

* Corresponding author

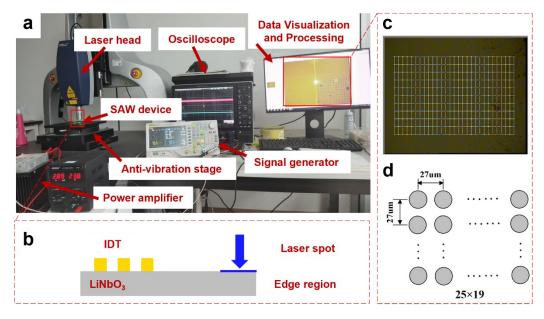
Email address: hanjunlong@szpu.edu.cn (Junlong Han), honghu@hit.edu.cn (Hong Hu), chenfu@szu.edu.cn (Chen Fu)

The file includes:

Fig. S1 to S7


Table. S1

Video S1 to S2


Data S1

Supplementary figure, video and data captions

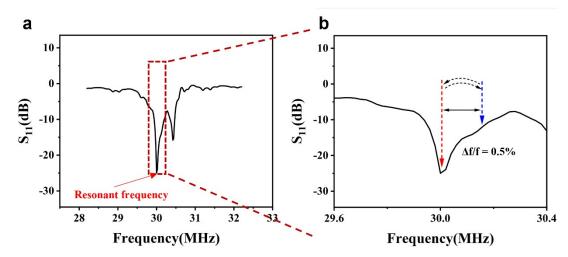
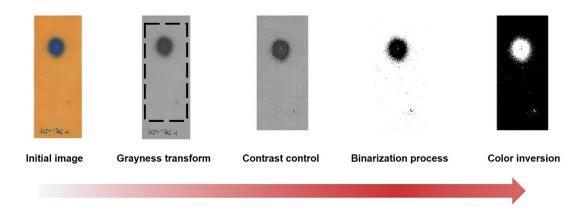

- Fig. S1. The experimental setup of the SAW-SAS.
- Fig. S2. Laser Doppler Vibrometer (LDV) measurement system.
- Fig. S3. Frequency Response (S11) Spectrum of the SAW Device.
- Fig. S4. Image processing of spray deposition characteristics.
- **Fig. S5.** Spray deposition on water-sensitive paper when swing-angle at approximately 5°.
- **Fig. S6.** Spray deposition on water-sensitive paper when swing-angle at approximately 30°.
- **Fig. S7.** Spray deposition on water-sensitive paper when swing-angle at approximately 45°.
- **Table. S1.** The standard deviation for all key parameters in Fig. 4(a)
- Video S1 Small swing-angle spray.
- Video S2 Large swing-angle spray.
- Data S1 SAW-SAS Deposition Characteristics.

Fig. S1. The experimental setup of the SAW-SAS. (a) Physical image of experimental setup. (b) Schematic diagram of experimental setup.

Fig. S2. Laser Doppler Vibrometer (LDV) measurement system. (a) Photograph of the experimental setup, integrating a SAW excitation module and a laser-based detection and analysis module. (b) Schematic illustrating the laser spot precisely focused on the device's edge region. (c) Micrograph of the device edge showing the 650 μ m × 500 μ m scanned grid. (d) Schematic of the 25 × 19 scan point array with 27 μ m spacing.

Fig. S3. Frequency Response (S11) Spectrum of the SAW Device. (a) S11 (return loss) measurement showing a clear resonant frequency at approximately 30.0 MHz. (b) Magnified view of the resonant peak, illustrating the 0.5% relative frequency deviation range on the high-frequency (right) side of the peak, which is used for the SAW-SAS swing-angle modulation. The non-linear slope of this curve explains the non-uniform angle-to-frequency response shown in **Fig. 3(b)**.



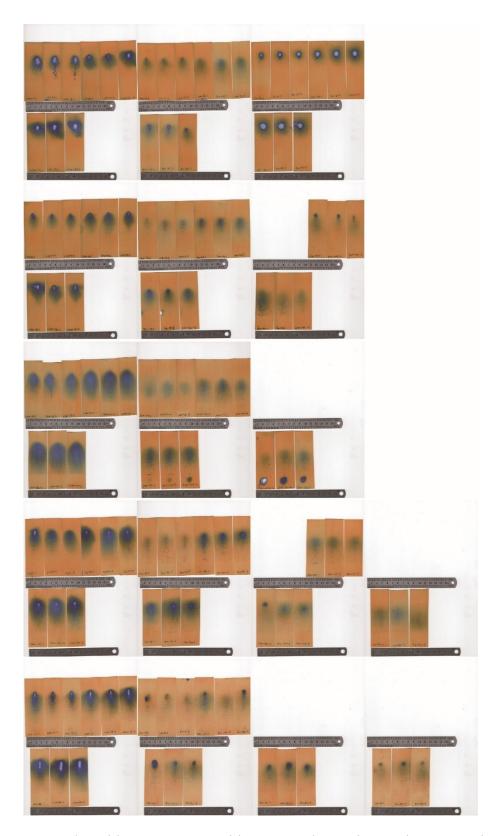

Fig. S4. Image processing of spray deposition characteristics.

Fig. S5. Spray deposition on water-sensitive paper when swing-angle at approximately 5°.

Fig. S6. Spray deposition on water-sensitive paper when swing-angle at approximately 30°.

Fig. S7. Spray deposition on water-sensitive paper when swing-angle at approximately 45°.

Table. S1. The standard deviation for all key parameters in Fig. 4(a)

Propagation	DV1	SD	VM	D SI)	DV9	SD	NMD	SD	Coverage	SD
Angle (°)	(µm)	(µm)	(µm	n) (µr	n)	(µm)	(µm)	(µm)	(µm)	(%)	(%)
5	72.	85 0	.73	114.05	2.40	2389.12	214.93	119.52	5.63	5.39	1.05
	73.	13 2	.05	109.86	6.57	3438.67	1246.10	119.18	8.92	9.69	3.82
	73.	94 1	.37	119.13	3.72	3944.28	624.35	128.81	7.31	12.58	4.01
	74.	36 3	.91	125.26	14.85	4453.49	361.93	130.09	14.15	16.53	2.49
	74.	36 3	.06	116.58	12.71	4904.94	509.03	124.07	13.96	5 20.00	3.85
30	74.	82 2	.83	107.95	9.38	1499.13	146.27	111.50	13.02	6.97	2.71
	74.	89 1	.39	115.75	3.02	2812.74	547.96	119.76	6.58	13.95	3.81
	74.	52 1	.96	121.26	9.14	2987.24	732.77	123.50	8.17	11.98	2.19
	74.	54 3	.40	117.58	21.05	2223.81	873.44	120.82	2 17.62	2 15.47	11.06
	77.	32 3	.05	126.48	17.78	3554.51	415.60	129.21	15.19	30.57	3.15
45	77.	65 1	.23	122.03	5.75	2319.87	298.81	124.72	3.16	14.95	6.42
	77.	97 1	.67	121.73	7.64	501.59	599.58	123.91	3.88	16.43	4.78
	80.	90 0	.41	143.58	6.67	3236.15	192.97	137.84	5.39	22.53	4.26
	80.	85 1	.29	148.82	9.82	3391.67	223.41	141.25	6.53	25.54	6.91
	78.	64 0	.73	138.60	5.27	286.53	180.33	128.98	3 2.40	10.08	7.06