

Supplementary Information

Microfluidic single-cell culture represents a versatile approach for tumor stem cell expansion and tumor organoid generation

Jueming Chen,^{1§} Xiaogang Wang,^{1§} Weijie Ye,^{1,3§} Hui Kang,¹ Siyan Xiao,⁴ Jiayu Li,⁴ Lihui Wang,^{4*} Dongguo Lin,^{1,2,3*} Dayu Liu^{1,2*}

1 *Department of Laboratory Medicine, School of Medicine, The Second Affiliated Hospital South China University of Technology (Guangzhou First People's Hospital), Guangzhou 510180, China.*

2 *Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China.*

3 *Institute of Clinical Medicine, Guangzhou First People's Hospital, Guangzhou 510180, China.*

4 *Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China.*

§Authors J. Chen, X. Wang and W. Ye contributed equally and share the first authorship.

Corresponding authors:

*Lihui Wang, Email: wanglh@jnu.edu.cn; *Dongguo Lin, Email: eylindg@scut.edu.cn; *Dayu Liu, Email: eydyliu@scut.edu.cn

Contents

Supplementary Methods

Method S1 Cell migration assay

Method S2 Cell invasion assay

Method S3 Colony formation assay

Method S4 *In vitro* differentiation assay

Method S5 Patient-derived tumor tissue preparation

Method S6 RNA sequencing

Supplementary Figures

Figure S1. Microfluidic approach validation

Figure S2. Formation of SDTs with various tumor cell lines

Figure S3. MTOs derived from diverse tumor cell lines following a 7-day differentiation culture period

Figure S4. STOs generated from individual SDT cells expanded from various tumor cell lines

Figure S5. Representative images showing the development of SDTs over 7 days of culture

Figure S6. Dynamic tracking of sizes of STOs generated from individual SDT cells expanded from patient-derived colorectal cancer cells

Figure S7. Immunofluorescence staining of MUC2 and CGA in patient-derived colorectal cancer STOs

Figure S8. Transcriptomic profiling of patient-derived colorectal cancer SDTs and STOs

Figure S9. Dynamic single-cell RNA sequencing shows RNAs synthesized within 1 h in individual STOs after a 7-day differentiation culture

Supplementary Tables

Table S1. Composition of colorectal cancer organoid culture medium

Table S2. Composition of liver cancer organoid culture medium

Table S3. Antibodies used in the immunofluorescence assays

Table S4. Clinicopathological characteristics of the tumor specimens and corresponding SDT/STO-formation outcomes

Supplementary Methods

Method S1 Cell migration assay

The lower chambers of 24-well Transwell plates were pre-filled with 500 μ L of DMEM containing 20% FBS. Recovered SDTs and MDTs were digested into single cells using trypsin-EDTA (0.25% EDTA), resuspended in serum-free DMEM, and adjusted to a density of 10,000 cells·mL⁻¹. Then, 200 μ L of the cell suspension was added to the upper chamber. After 48 hours of incubation, the cells were stained with crystal violet. Non-migrated cells on the inner side of the upper membrane were gently removed using a cotton swab. The migrated cells on the outer surface were imaged and quantified under an inverted microscope.

Method S2 Cell invasion assay

A 30 μ L aliquot of Matrigel was added to each well of a 96-well plate to form a uniform coating. After solidification, recovered SDTs and MDTs were digested into single cells and adjusted to a density of 50,000 cells·mL⁻¹. Then, 20 μ L of the cell suspension was mixed with an equal volume of Matrigel (1:1 ratio), and the mixture was added onto the pre-coated Matrigel layer. Following gel solidification, 100 μ L of DMEM supplemented with 10% FBS was added. After 48 hours of culture, cell invasion was observed under a microscope.

Method S3 Colony formation assay

Recovered SDTs and MDTs were digested into single cells and resuspended in DMEM supplemented with 10% FBS. The cell density was adjusted to 300 cells·mL⁻¹, and 2 mL of the suspension was seeded into each well of a 6-well plate. After two weeks of continuous culture, the cells were stained with 1% crystal violet solution, and colony

formation was documented under a camera.

Method S4 *In vitro* differentiation assay

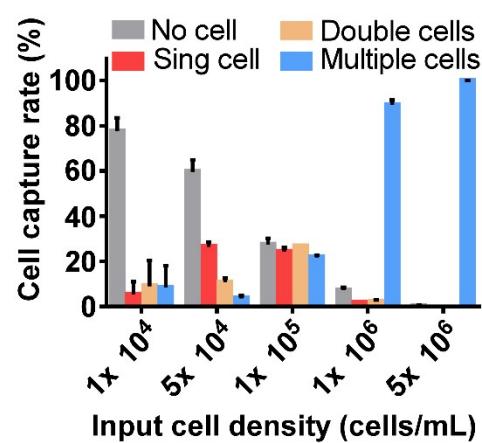
Endothelial differentiation Cells were seeded into 6-well plates and cultured in endothelial growth medium (EGM) containing 50 ng·mL⁻¹ VEGF to induce differentiation under adherent conditions. After 5-7 days, the cells were digested with trypsin-EDTA (0.25% EDTA), collected, and resuspended in EGM. Subsequently, 1,000 cells per well were seeded into a 96-well plate pre-coated with Matrigel. Tube formation was observed and recorded after 12-24 hours. The cells were then digested into single cells using trypsin-EDTA to dissolve the Matrigel, and the percentage of CD31-positive cells was determined by flow cytometry.

Osteogenic differentiation Osteogenic differentiation was induced using a differentiation kit (Stemcell Technologies) according to the manufacturer's instructions. Briefly, cells resuspended in stem cell medium were seeded into 24-well plates at a density of 10,000-50,000 cells per well. When the cells reached 90% confluence, the medium was replaced with osteogenic differentiation medium containing 2 mM L-glutamine (1 mL·well⁻¹). The cells were cultured for 14 days, with medium changes every 3-4 days. Finally, the cells were fixed with 4% paraformaldehyde and stained with Alizarin Red S to assess mineralization.

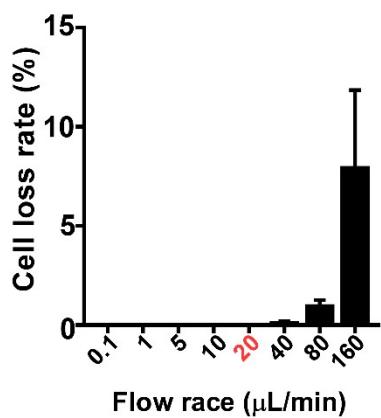
Cardiomyocyte differentiation Cardiomyocyte differentiation was performed using a differentiation kit (Stemcell Technologies) with modifications. Briefly, 24-well plates were coated with Matrigel and incubated at room temperature for 1 hour, after which the excess solution was removed. Then, 50,000 cells per well were seeded and cultured in stem cell medium for 24-48 hours until 90% confluence was reached. Next, 1 mL of cardiomyocyte differentiation medium A supplemented with 1% Matrigel was added and incubated for 2 days. This was followed by sequential incubation with cardiomyocyte differentiation media B and C for 1 day each. Finally, the cells were maintained in cardiomyocyte maintenance medium for 5-7 days, with daily medium changes. The expression of the cardiomyocyte marker cTn-I was evaluated by immunofluorescence staining.

Method S5 Patient-derived tumor tissue preparation

Viable regions of the primary tumor were selected and dissected into approximately 1 cm³ pieces, which were immediately immersed in pre-cooled Advanced DMEM/F12 medium containing 5% antibiotic-antimycotic and transported on ice to the laboratory.


The fresh tissue samples were thoroughly washed with ice-cold PBS containing 5% antibiotic-antimycotic until the supernatant became clear. After discarding the supernatant, the tissue was minced into ~1 mm³ fragments using a scalpel. The minced tissue was then transferred to a 15 mL centrifuge tube, digested with 1 mL of collagenase type IV (2 mg·mL⁻¹) at 37 °C for 0.5-1 h with occasional gentle agitation. Subsequently, 10 mL of ice-cold PBS was added, and the mixture was gently pipetted to dissociate the tissue fragments. The suspension was filtered through a 100 µm cell strainer to remove undigested debris. The resulting cell clusters were further dissociated into single cells for subsequent microfluidic culture.

Method S6 RNA sequencing


Total RNA was extracted and purified from the cells. The quality and integrity of the isolated RNA were initially assessed using quantitative real-time PCR (qRT-PCR), which confirmed that all RNA samples were of high quality and suitable for downstream sequencing. Subsequently, medium-throughput sequencing was employed for library preparation. The constructed libraries underwent rigorous quality control (QC) to evaluate integrity, size distribution, and uniformity. To ensure high-quality sequencing data, multiplexed sequencing was performed, and the raw data were processed using an RNA-seq analysis pipeline. Data preprocessing included normalization and quality control to ensure reliability. Differential gene expression analysis was conducted using DESeq2, while transcript quantification and differential expression analysis were performed with Cufflinks, yielding expression profiles for each gene.

Supplementary Figures

A

B

C

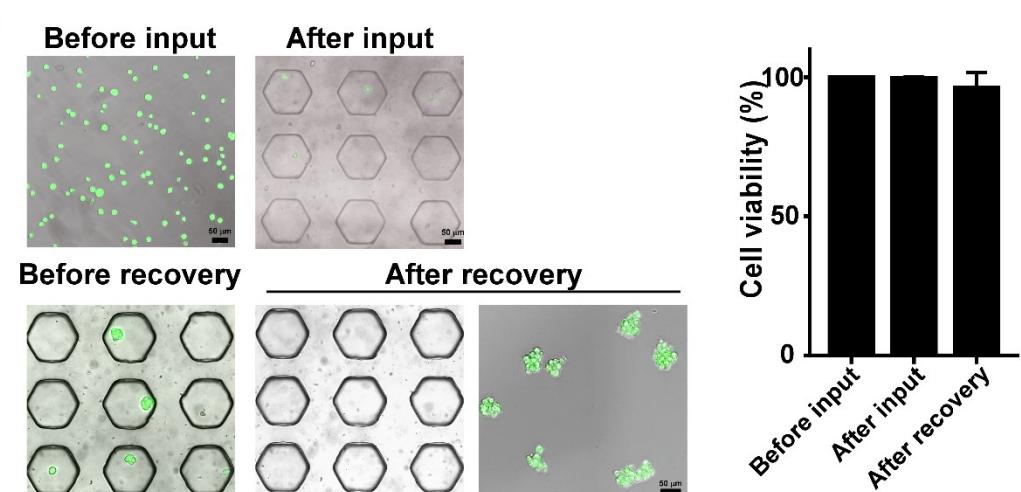


Figure S1. Microfluidic approach validation. A. Cell capturing by microwells with various input cell densities. B. Cell loss determined under different perfusion flow rate. C. Cell viabilities determined before loading, after loading, before retrieval, and after retrieval.

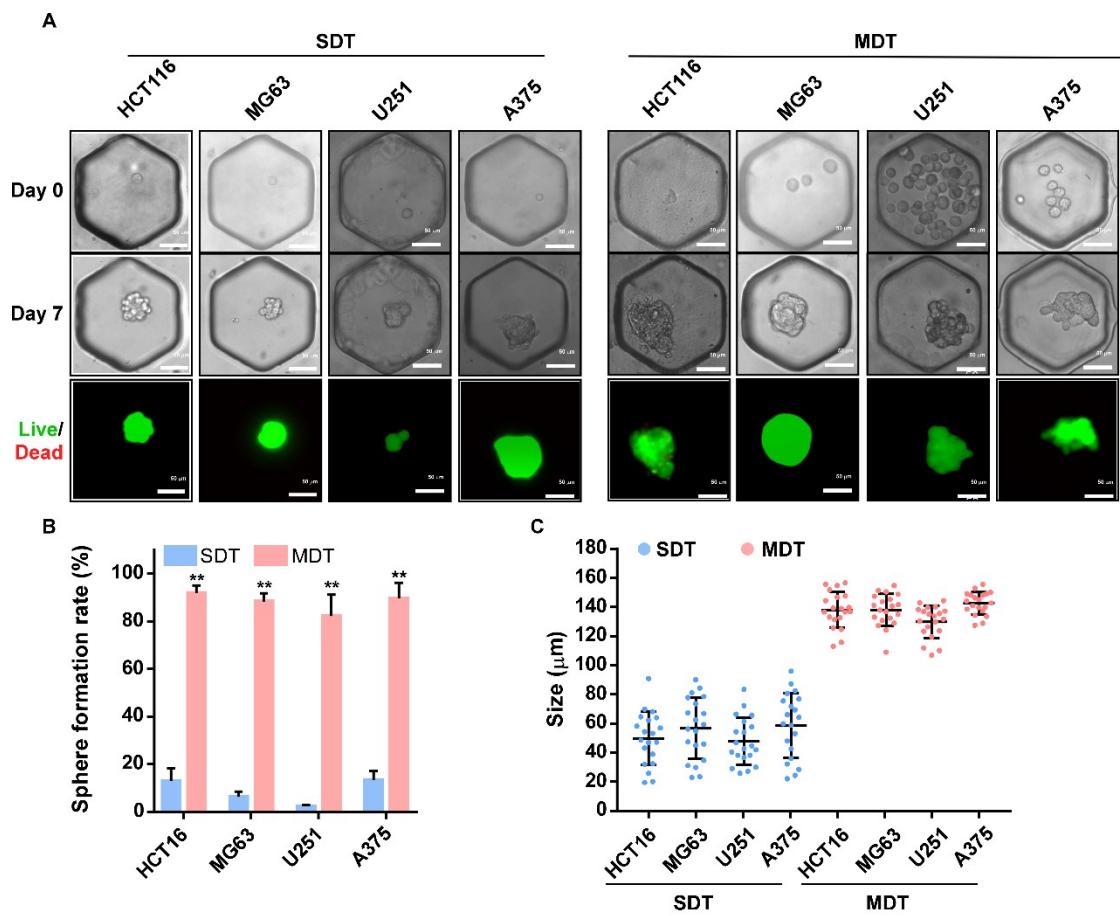


Figure S2. Formation of SDTs with various tumor cell lines. A. Representative images showing the development of SDTs and MDTs over 7 days of culture. B. Sphere formation rates of SDTs and MDTs over 7 days of culture. C. Sizes of SDTs and MDTs determined on day 7.

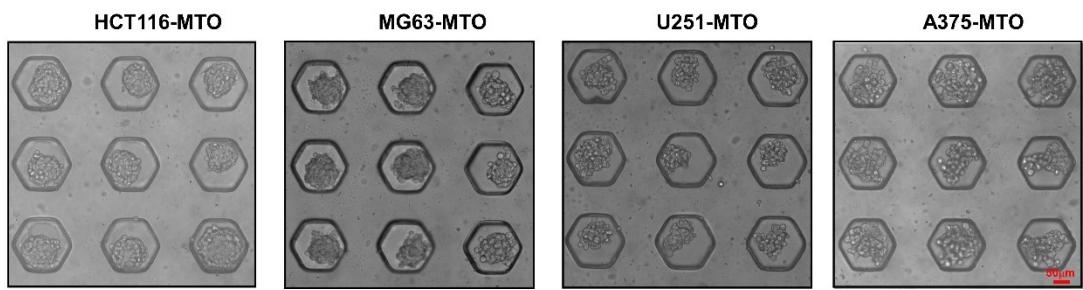


Figure S3. MTOs derived from diverse tumor cell lines following a 7-day differentiation culture period (Scale bar: 50 μ m).

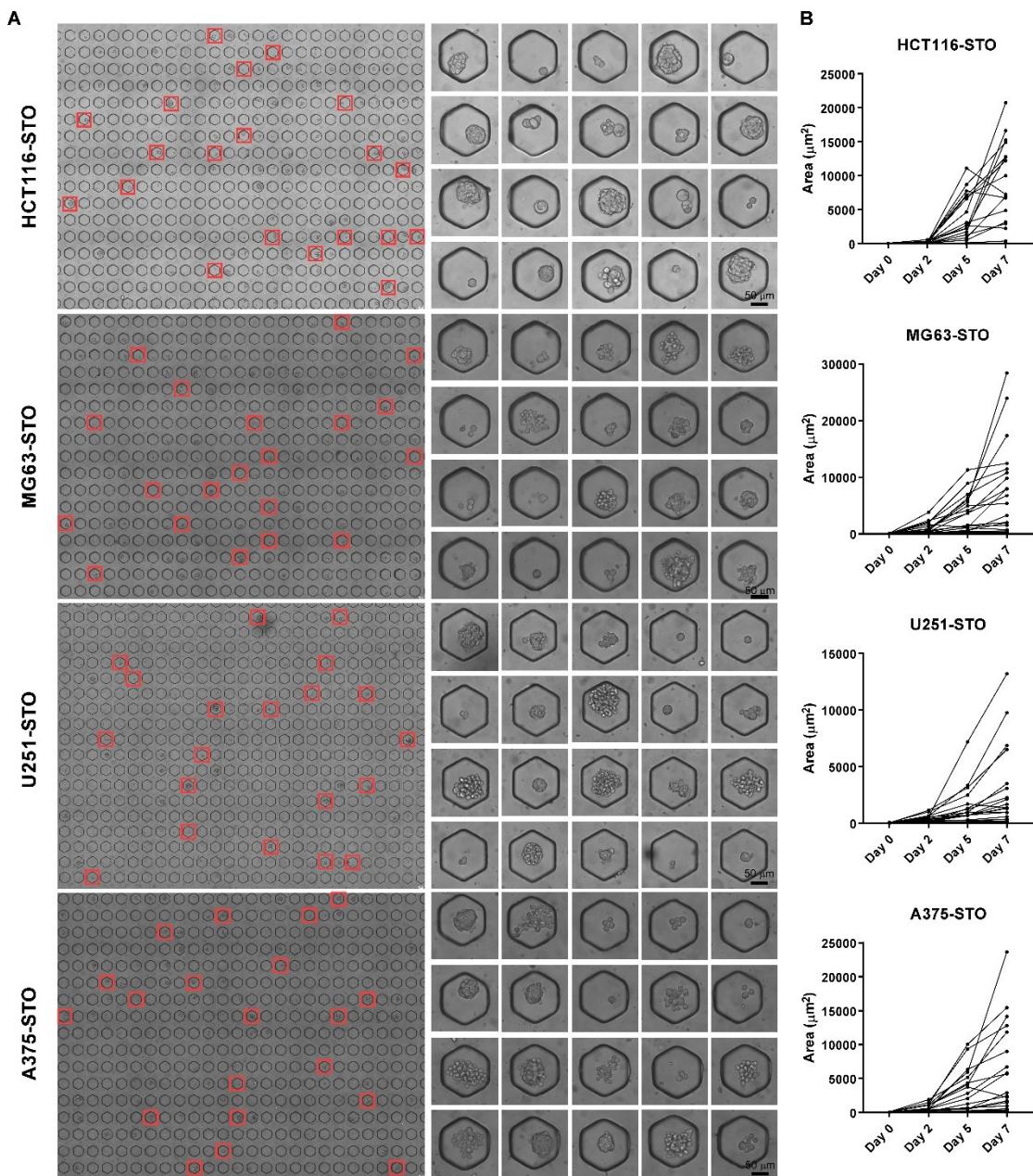


Figure S4. STOs generated from individual SDT cells expanded from various tumor cell lines. A. Representative images of STOs formed after 7 days of differentiation culture from individual SDT cells (Scale bar: 50 μ m). B. Dynamic tracking of STO sizes.

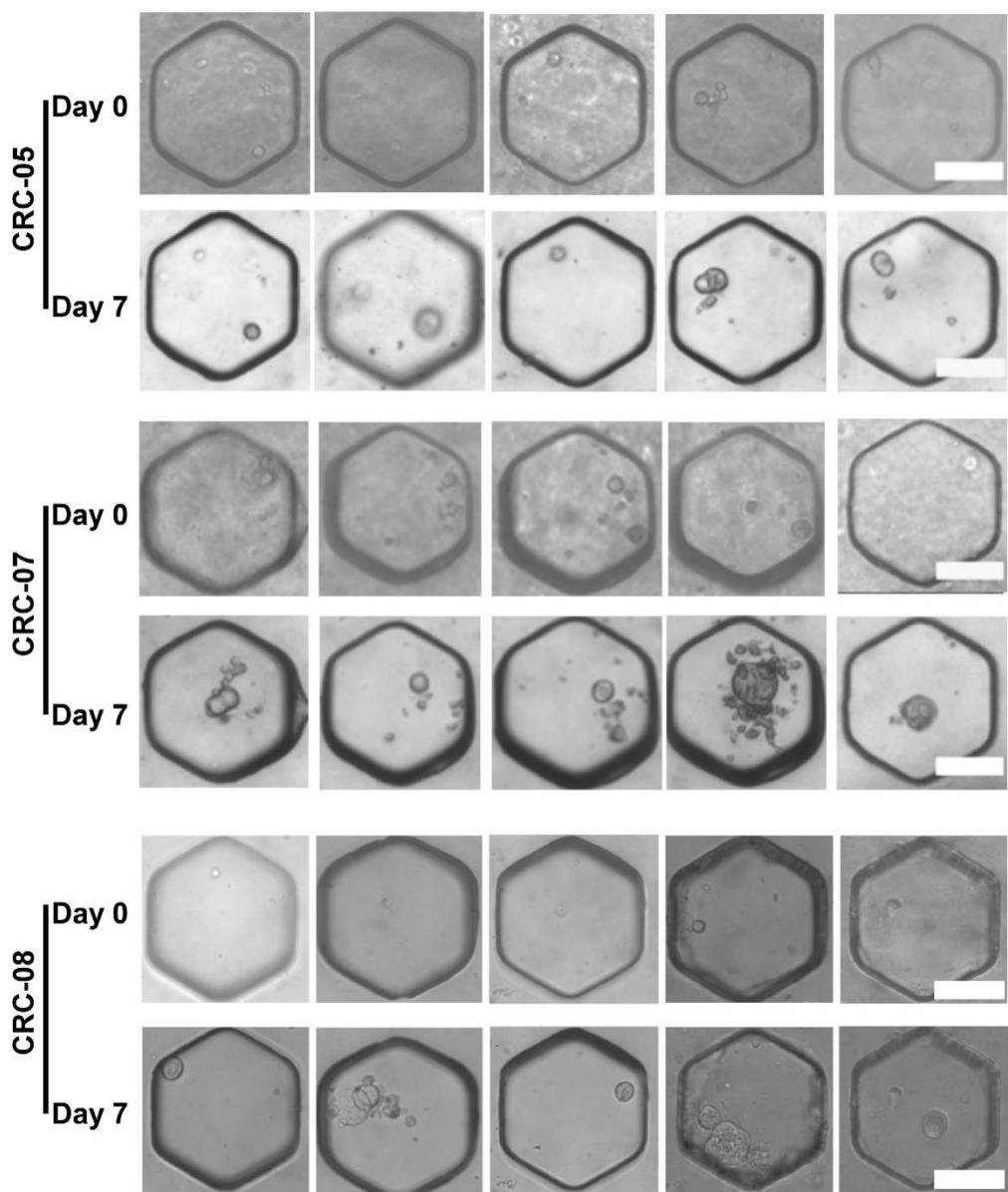


Figure S5. Representative images showing the development of SDTs over 7 days of culture (Scale bar: 50 μ m)

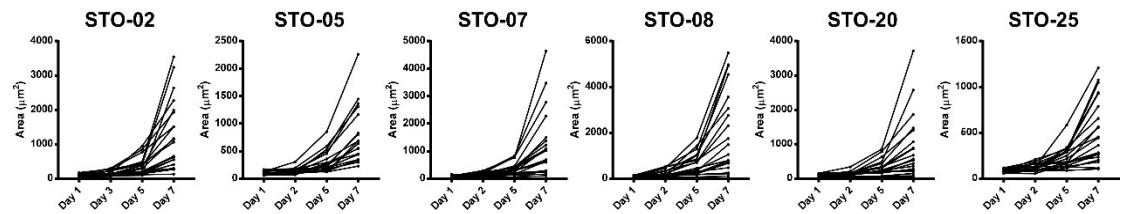


Figure S6. Dynamic tracking of sizes of STOs generated from individual SDT cells expanded from patient-derived colorectal cancer cells.

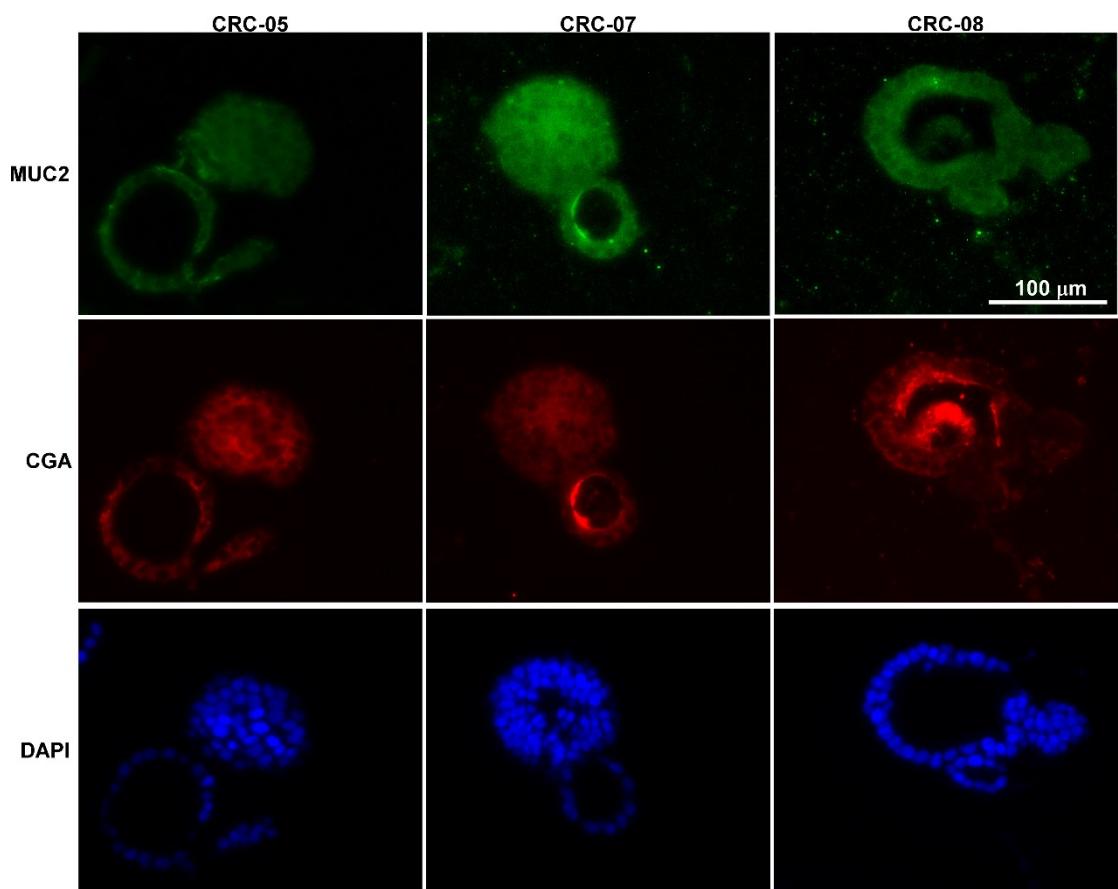


Figure S7. Immunofluorescence staining of MUC2 and CGA in patient-derived colorectal cancer STOs.(Scale bar: 100 μ m)

Figure S8. Transcriptomic profiling of patient-derived colorectal cancer SDTs and STOs. A, B. Venn diagrams displaying highly expressed genes in TSCs (A) and STOs (B) from three colorectal cancer patients. C, D. GSEA showing enriched gene sets in TSCs (C) and STOs (D).

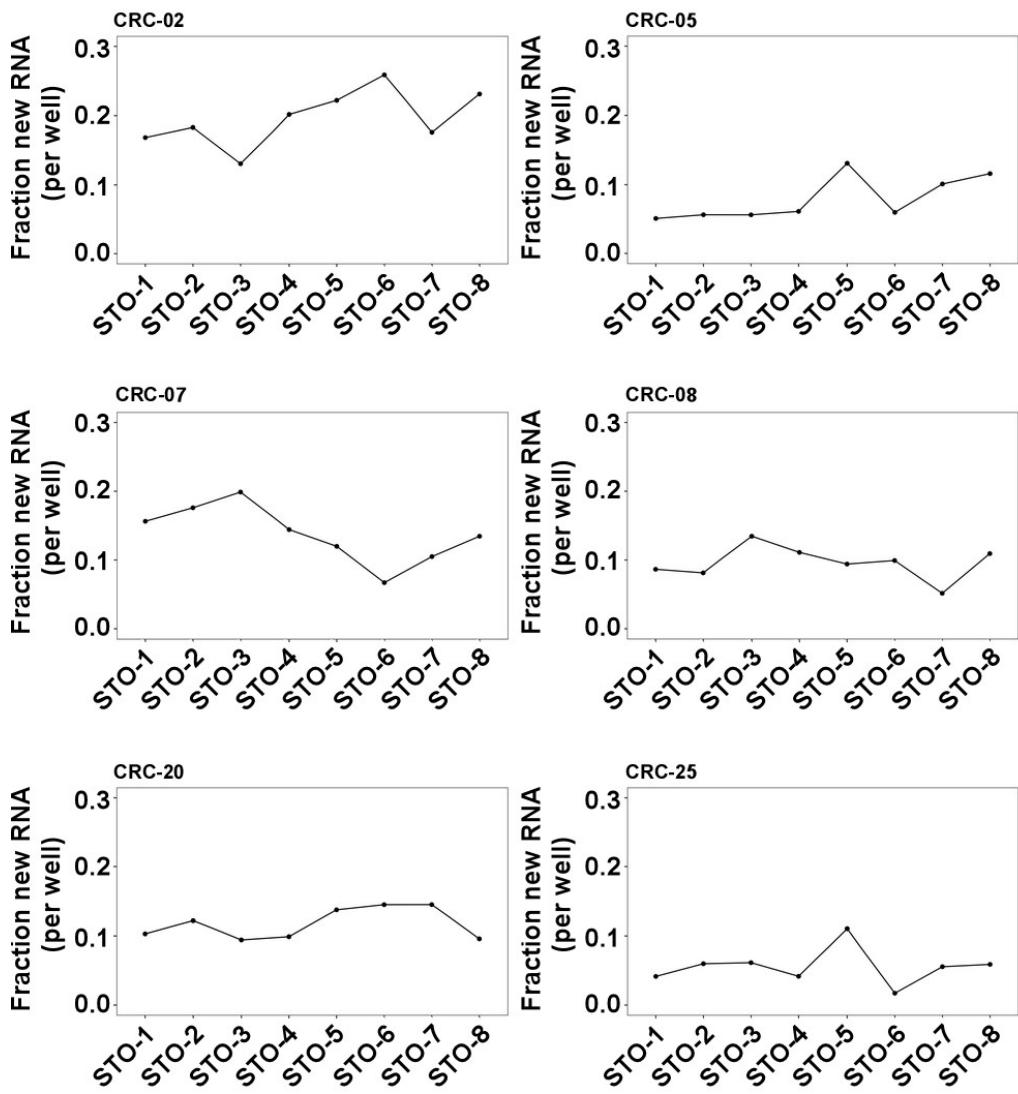


Figure S9. Dynamic single-cell RNA sequencing shows RNAs synthesized within 1 h in individual STOs after a 7-day differentiation culture.

Supplementary Tables

Table S1. Composition of colorectal cancer organoid culture medium

Component	Concentration	Supplier	Catalog Number
advanced-DMEM/F12	-	ThermoFisher	12634010
HEPES	10 mM	Aladdin	H109406
B27	1%	Gibco	17504-044
Nicotinamide	10 mM	Sigma	N0636
human EGF	50 ng·mL ⁻¹	Peprotech	AF-100-15
n-Acetyl-L-Cysteine	1.25 mM	Sigma	A9165
SB202109	3 µM	MCE	72632
A8301	500 nM	MCE	HY-10432
R-Spondin	250 ng·mL ⁻¹	Peprotech	120-38-1
Gastrin	10 nM	Tocris	3006
GlutaMax	1%	Gibco	35050-061
prostaglandin E2	10 nM	MCE	HY-101952
noggin	100 ng·mL ⁻¹	Peprotech	120-10C
wnt-3a	50 ng·mL ⁻¹	R&D Systems	5036-WN-500

Table S2. Composition of liver cancer organoid culture medium

Component	Concentration	Supplier	Catalog Number
advanced-DMEM/F12	-	ThermoFisher	12634010
HEPES	10 mM	Aladdin	H109406
N21-MAX Vitamin A Free Media Supplement (50X)	1%	R&D Systems	AR012
Nicotinamide	10 mM	Sigma	N0636
human EGF	50 ng·mL ⁻¹	Peprotech	AF-100-15
human FGF10	100 ng·mL ⁻¹	Peprotech	
n-Acetyl-L-Cysteine	1.25 mM	Sigma	A9165
A8301	500 nM	MCE	HY-10432
R-Spondin	500 ng·mL ⁻¹	Peprotech	120-38-1
GlutaMax	1%	Gibco	35050-061
prostaglandin E2	10 nM	MCE	HY-101952
noggin	100 ng·mL ⁻¹	Peprotech	120-10C
Forskolin	10 µM	MCE	HY-15371
HGF	25 ng·mL ⁻¹	Peprotech	100-39
wnt-3a	50 ng·mL ⁻¹	R&D Systems	5036-WN-500

Table S3. Antibodies used in the immunofluorescence assays

Antibody	Concentration	Supplier	Catalog Number
SOX2	1:200	Thermo Fisher	53-9811-82
CD133	1:200	Abcam	ab19898
LGR5	1:200	Abcam	ab273092
CD44	1:200	Proteintech	60224-1-ig
MUC2	1:200	Servicebio	GB14110
CGA	1:200	Servicebio	GB111316

Table S4. Clinicopathological characteristics of the tumor specimens and corresponding SDT/STO-formation outcomes

Tumor type	Patient	Gender	Age	Histological type	SDT formation rate (%)	SDT size (μm)	STO formation rate (%)	STO size (μm)
colorectal cancer	CRC-01	Male	82	Adenocarcinoma	0	-	0	-
	CRC-02	Female	54	Mucinous adenocarcinoma	5.81±1.97	11.63±4.45	34.23±7.33	37.28±16.14
	CRC-03	Male	38	Adenocarcinoma	0	-	0	-
	CRC-04	Male	73	Adenocarcinoma	0	-	0	-
	CRC-05	Female	66	Adenocarcinoma	11.43±4.22	12.06±6.19	53.18±5.89	29.68±9.57
	CRC-06	Male	53	Adenocarcinoma	0	-	0	-
	CRC-07	Female	78	Adenocarcinoma	3.79±1.15	10.45±2.55	41.17±9.43	36.12±17.49
	CRC-08	Male	85	Adenocarcinoma	3.83±1.69	11.59±6.61	25.02±15.14	44.89±23.72
	CRC-09	Female	77	Adenocarcinoma	0	-	0	-
	CRC-10	Female	52	Adenocarcinoma	0.31±0.45	10.25±6.12	0	-
	CRC-11	Female	69	Adenocarcinoma	0	-	0	-
	CRC-12	Male	34	Adenocarcinoma	0	-	0	-
	CRC-13	Male	81	Adenocarcinoma	0.69±0.73	10.92±3.67	0	-
	CRC-14	Female	53	Adenocarcinoma	1.26±0.44	12.51±4.28	0	-
	CRC-15	Male	59	Adenocarcinoma	0	-	0	-
	CRC-16	Male	72	Adenocarcinoma	0	-	0	-
	CRC-17	Male	66	Adenocarcinoma	0.25±0.31	10.62±3.13	0	-
	CRC-18	Male	67	Adenocarcinoma	0.04±0.03	9.92±6.27	0	-
	CRC-19	Female	71	Adenocarcinoma	0.02±0.02	10.17±5.01	0	-
	CRC-20	Male	55	Mucinous adenocarcinoma	17.77±4.69	12.10±5.90	65.30±6.78	30.08±15.79
	CRC-21	Male	79	Adenocarcinoma	0.07±0.05	10.24±3.06	0	-

	CRC-22	Male	75	Adenocarcinoma	0.12±0.06	9.41±4.17	0	-
	CRC-23	Female	69	Adenocarcinoma	0.02±0.03	10.03±6.52	0	-
	CRC-24	Male	42	Adenocarcinoma	0.05±0.05	11.06±4.15	0	-
	CRC-25	Female	73	Adenocarcinoma	7.47±1.90	10.76±3.41	41.02±8.61	24.64±8.72
	CRC-26	Male	29	Adenocarcinoma	0	-	0	-
	LIHC-01	Female	51	Hepatocellular carcinoma	0	-	0	-
	LIHC-02	Male	46	Hepatocellular carcinoma	0.12±0.13	11.37±5.22	0	-
Liver cancer	LIHC-03	Female	75	Hepatocellular carcinoma	0	-	0	-
	LIHC-04	Male	63	Cholangiocellular carcinoma	0	-	0	-
	LIHC-05	Male	68	Hepatocellular carcinoma	0	-	0	-
Osteosarcoma	BT-01	Male	7	Osteosarcoma	0	-	0	-
	BT-02	Male	10	Ewing's sarcoma	0	-	0	-
Glioma	GO-01	Male	53	Glioma	0	-	0	-
	GO-03	Male	41	Glioma	0	-	0	-