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Supplementary Note 1

To validate the effectiveness of the proposed numerical model, a physical 
experiment was conducted. A representative set of model parameters was randomly 
selected (excluding the inlet particle ratio IR) for experimental verification, as listed in 
Supplementary Tab. 2.

Based on the parameters in Supplementary Tab. 2, a photomask was fabricated 
and used to produce a PDMS microfluidic chip. A 5 mL suspension of 1 μm 
polystyrene (PS) microspheres was prepared and loaded into a 10 mL syringe. The 
inlet ports were connected to syringe pumps according to the selected flow parameters, 
with prescribed inlet flow rates. The PS suspension syringe was connected to inlet 
port 1 via tubing, and the flow was initiated at a fixed rate. Particle motion was 
recorded using a high-speed camera and saved for analysis. Under identical parameter 
settings, a numerical simulation model was constructed, with all configurations kept 
constant except for the number of input particles, which was set to 200 to better 
visualize particle distribution under different inlet ratios. A comparison between 
experimental results and simulation trajectories (Supplementary Fig. 2) demonstrates 
strong agreement, confirming the reliability of the numerical model for generating 
training data for trajectory prediction.

Supplementary Note 2

To simplify the sequential data of continuous particle trajectories (i.e., two-
dimensional spatial coordinates over time), only the particle position at the module 
exit—defined as the cross-section location at a fixed distance downstream of the 
channel—is retained for each module. This position is represented as a one-
dimensional scalar along the cross-sectional width. Additionally, the particle outlet at 
each branching junction is treated as a categorical label to avoid unphysical 
predictions beyond the channel boundaries. The model also predicts the instantaneous 
velocity of the particle at the cross-section, along with the transit time across the 
module. A schematic of the predicted parameters is shown in Supplementary Fig. 3.

Here, OL denotes the outlet label, , D is the channel width at the  2,3,4LO 

outlet, and d is the vertical distance from the particle to the left channel wall at the 

module exit. The normalized outlet particle position is defined as . /RO d D

Similarly, the inlet ratio IR is defined as , where di is the vertical distance /R i iI d D

from the particle to the left wall at the module entry, and Di is the corresponding inlet 
channel width for module/node i. VX and VY denote the particle velocity components 
in the x and y directions at the outlet, respectively, and T is the time taken for the 



particle to traverse from the module inlet to the exit location.

Supplementary Note 3

Deep learning was implemented in MATLAB using a multi-layer residual 
backpropagation neural network to predict particle trajectories. The input layer 
receives 20 features capturing the influence of flow conditions, channel geometry, and 
particle properties on the trajectory. The output corresponds to a single node encoding 
multiple outcomes, including the outlet label, particle position along the cross-section, 
local flow velocity at the outlet, and transit time through the module.

For outlet label classification, categorical labels were transformed into one-hot 
encoded vectors, mapping each class to an independent binary representation. This 
avoids introducing numerical bias and facilitates the network's handling of discrete 
categorical features. The dataset was subsequently normalized, randomly shuffled, 
and split into training and testing subsets in an 8:2 ratio, enabling later evaluation of 
classification accuracy on the test set. The network architecture comprises an input 
layer with 20 neurons (encoding position ratios, flow conditions, channel structures, 
and particle attributes), followed by 20 hidden layers constructed using residual 
blocks. Each residual block contains two fully connected sublayers—the first with 20 
neurons and the second with 25 neurons—and incorporates skip connections to 
mitigate the degradation problem associated with deep architectures. ReLU activation 
is applied to all hidden layers. The output layer contains three neurons (corresponding 
to the three-bit one-hot encoding of outlet labels), equipped with a softmax activation 
function to yield class probabilities. Cross-entropy loss was employed as the objective 
function (Eq. 1), and model optimization was performed using the NADAM optimizer 
with adaptive learning rate scheduling.
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Here, yi denote the ground truth of the i-th training instance and  is the $
iy

corresponding prediction, where n is the total number of samples. The NADAMs 
optimizer, a refined variant combining the Adam and Nesterov Accelerated Gradient 
(NAG) methods, enhances gradient updates by incorporating Nesterov momentum. 
This allows the optimizer to anticipate the trajectory of parameter updates early 
during training, enabling faster convergence and improved training stability. To 
further accelerate convergence and improve computational efficiency, mini-batch 
training with an appropriate batch size is employed. Supplementary Fig. 8 illustrates 
the decrease in cross-entropy loss on the training set and the corresponding accuracy 
trend on the test set during classification.

For the prediction of normalized position, outlet velocity, and particle arrival 
time—formulated as regression tasks—the same normalization, shuffling, and train-
test split procedures are applied as in the classification task. The regression networks 



adopt a similar architecture: 20 input neurons encoding features related to position 
ratio, flow conditions, channel geometry, and particle properties. The networks 
predicting position and arrival time comprise 20 residual layers, while the velocity 
prediction network uses 10 residual layers. Each residual block contains two fully 
connected layers with 50 and 100 neurons respectively, equipped with ReLU 
activations. The output layers consist of a single neuron for position and time 
prediction, and two neurons for velocity prediction (representing x- and y-direction 
velocities). The models are trained using the L1 loss, minimized by the NADAMs 
optimizer:
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where N is the total number of samples, yi denotes the ground truth, and  is the $
iy

model prediction. Supplementary Fig. 9 shows the decrease in L1 loss during training 
and the corresponding accuracy trend on the test set.

Supplementary Note 4

The microfluidic channel layout was retroactively designed based on predefined 
particle trajectories or designated outlet positions. To reconstruct device structures 
from the predicted sequence of trajectory nodes or the identified terminal node index, 
the following assumptions were made:

1. Modules are assumed to be seamlessly connected, or any additional 
interconnection length is negligibly small and thus treated as infinitesimal in the 
analysis.

2. The inter-module connection segments are assumed to exert negligible 
influence on the information received (IR) by the downstream module, which is 
computed via a logical OR operation based on the upstream state.

3. Inlet flow conditions are presumed to remain invariant, such that structural 
modifications within the device affect only the local flow characteristics within 
individual modules.

4. The geometric configuration of the channels is assumed not to perturb the 
flow state at the interface between adjacent modules.

These assumptions ensure that:
1. Assumption 1 allows for consistent fluid velocity across connecting segments, 

enabling the approximation of flow continuity between modules.
2. Assumption 2 safeguards the validity of spatial parameter transmission across 

modules by isolating it from transitional segment effects.
3. Assumption 3 guarantees that particle trajectories are modulated solely by 

internal geometric changes, independent of inlet disturbances.
4. Assumption 4 preserves the modular independence of local flow fields, 

preventing unintended cross-influence via interface geometry.





Supplementary Figures

Supplementary Fig. 1. Illustration of flow, channel and particle design parameters.

Supplementary Fig. 2. Comparison between experimental and simulation results.
a Physical experiment. b Numerical simulation.

Supplementary Fig. 3. Schematic illustration of output parameters.



Supplementary Fig. 4. Ambiguous regions in trajectory classification.
Orange circles indicate regions prone to classification ambiguity, primarily arising from: a 
particles entering adjacent branches within spatially close bifurcations, or b narrow high-curvature 
regions near multiple outlet junctions that induce trajectory divergence.

Supplementary Fig. 5. Workflow of manual and automated channel design.
Users can interactively assemble modular microchannel geometries in PathChip by combining 
three base channel types, allowing them to generate trajectory-guided structures that meet 
functional specifications under predefined flow field conditions. Manual forward design is 
natively supported within PathChip without external dependencies. In contrast, automated inverse 
design represents an extended functionality requiring integration of adjacency matrices and 
circuit-based logic modules.



Supplementary Fig. 6. Circuit configuration derived from adjacency matrix.
Each labeled node corresponds to an index in the adjacency matrix. A fixed 10 A current is 
applied at the inlet, and voltmeters are used to measure voltage drops across resistors for current 
computation. The initial circuit design assumes uniform resistance R=1 , disregarding length-k
dependent effects of channel segments.



Supplementary Fig. 7. Schematic of the experimental setup.
A diagrammatic overview of the physical platform used for flow field generation, particle tracking, 
and validation.



Supplementary Fig. 8. Training performance of the classification neural network.
a The optimized classification model exhibits a decreasing training loss over epochs. b Accuracy 
on the test set improves progressively during training.



Supplementary Fig. 9. Training performance of the regression neural network.
a The optimized regression model shows reduced training loss; this model is used to predict outlet 
position ratio, outlet velocity, and time to arrival. b Accuracy on the test set increases as training 
progresses.



Supplementary Fig. 10. Main interface and functional layout of the application.
1. Initialization panel; 2. Parameter configuration panel; 3. Parameter generation panel; 4. 
Visualization window; 5. Trajectory output panel; 6. Visualization assistance panel; 7. Export 
panel.



Supplementary Tables

Supplementary Tab. 1. Parameter settings and corresponding ranges.

No. Parameter Name Symbol Range Unite Explanation

1 Inlet Ratio IR 0~1 N/A The position of particles in 
the cross section at the inlet

2 Inlet 1 Width W1 50~500 μm Width of channel 1

3 Inlet 2 Width W2 50~500 μm Width of channel 2

4 Inlet 3 Width W3 50~500 μm Width of channel 3

5 Inlet 4 Width W4 50~500 μm Width of channel 4

6 Chamfer C 0/45 ° Chamfer angle of the joint

7 Inlet 1 Velocity V1 0.5~10 cm/s Inlet flow velocity of 
channel 1

8 Inlet 2 Velocity V2 0~10 cm/s Inlet flow velocity of 
channel 2

9 Label 2 L2 -1/0/1 N/A Mark channel 2 as 
outflow/none/inflow

10 Inlet 3 Velocity V3 0~10 cm/s Inlet flow velocity of 
channel 3

11 Label 3 L3 -1/0/1 N/A Mark channel 3 as 
outflow/none/inflow

12 Inlet 4 Velocity V4 0~10 cm/s Inlet flow velocity of 
channel 4

13 Label 4 L4 -1/0/1 N/A Mark channel 4 as 
outflow/none/inflow

14 Angle 1 A1 30~150 °
Angle between channel 1 

and channel 2

15 Angle 2 A2 0/90 °
Angle between channel 1 

and channel 3

16 Angle 3 A3 30~150 °
Angle between channel 1 

and channel 4

17 Structure Type K 0/1/2 N/A Channel structure type No.

18 Radius R 0~1000 μm Radius of curved channel



Note: The explicit formulation of IR (Inlet Ratio) is provided in Supplementary Note 2: Definition 
of particle position ratio at the outlet.

Supplementary Tab. 2. Sampled parameter set used for experimental validation.

No. Param. Val. No. Param. Val. No. Param. Val.

1 W1
333
(μm) 8 L2 -1 15 A3 81(°)

2 W2
121
(μm) 9 V3

9
(cm/s) 16 K 0

3 W3
117
(μm) 10 L3 1 17 R 0

(μm)

4 W4
452
(μm) 11 V4

0
(cm/s) 18 DP

1
(μm)

5 C 0(°) 12 L4 -1 19 ρ 1.05
(g/cm3)

6 V1
6

(cm/s) 13 A1 91(°)

7 V2
0

(cm/s) 14 A2 0(°)

Supplementary Tab. 3. Performance of PMPM regression for predicting particle motion

Parameter Symbol R2 RMSE Unit MAE Unit
Outlet 

Position OR 0.825±0.002 0.114±0.006 N/A 0.022±0.007 N/A

Velocity X VX 0.956±0.011 0.013±0.002 m/s 0.005±0.002 m/s

Velocity Y VY 0.946±0.039 0.007±0.001 m/s 0.003±0.002 m/s

Passage 
Time T 0.775±0.112 0.022±0.012 s 0.006±0.002 s

Supplementary Tab. 4. Kirchhoff’s current and voltage equations derived from the 
adjacency matrix in Supplementary Fig. 6.
The number of equations must be greater than or equal to the number of unknown branch currents 
to ensure solvability. The listed equations are formulated into a linear system and solved in 
MATLAB to obtain the magnitude and direction of each branch current.

No. Kirchhoff’s Current Equition Kirchhoff’s Voltage Equition

1 16 1 10I I I   11 12 13 14 15 0I I I I I R    

19 Particle Diameter DP 0.5~20 μm Diameter of the particles

20 Particle Density ρ 0.5~1.5 g/cm3 Density of the particles



2 17 3 2I I I   1 12 13 14 15 10 0I I I I I I R     

3 18 5 4I I I   2 3 13 14 15 11 0I I I I I I R     

4 19 7 6I I I   4 5 12 14 15 11 0I I I I I I R     

5 20 9 8I I I   6 7 12 13 15 11 0I I I I I I R     

6 1 11 2 12I I I I    8 9 11 13 14 12 0I I I I I I R     

7 3 12 4 13I I I I    1 12 13 6 7 15 10 0I I I I I I I R      

8 13 5 6 14I I I I    2 3 13 6 7 15 11 0I I I I I I I R      

9 14 7 8 15I I I I    4 5 14 15 10 1 12 0I I I I I I I R      

10 15 9 10 11I I I I    8 9 11 2 3 13 14 0I I I I I I I R      

Supplementary Tab. 5. The number of modules and the corresponding AID algorithm 
computation time

Modules Number Average Computation Time (s) Time Standard Deviation (s)
10 0.710 0.04295
50 0.897 0.04448

100 1.025 0.04625
500 2.057 0.47286
1000 2.995 0.48312
5000 18.821 1.80655


