Supplementary Information (Sl) for Lab on a Chip.
This journal is © The Royal Society of Chemistry 2026

Supporting Information for
Deep learning-driven microfluidic chip architecture design for

intelligent particle motion control

Hongxia Li»"# Xuhui Chen®*, Du Qiao®*, Xue Zhang?, Jiang Zhang? Jianan Zou?,
Danyang Zhao?, Xuhong Qian®, Honglin Lib"*

a State Key Laboratory of High-Performance Precision Manufacturing, Dalian
University of Technology, Dalian 116023, China

b Innovation Center for Al and Drug Discovery, School of Pharmacy, East China
Normal University, Shanghai 200062, China

# These authors contributed equally to this work.

The PDF file includes:
Supplementary note 1 to 4
Supplementary figures 1 to 10
Supplementary tables 1 to 5
Supplementary videos 1 to 4



Supplementary Note 1

To validate the effectiveness of the proposed numerical model, a physical
experiment was conducted. A representative set of model parameters was randomly
selected (excluding the inlet particle ratio /) for experimental verification, as listed in
Supplementary Tab. 2.

Based on the parameters in Supplementary Tab. 2, a photomask was fabricated
and used to produce a PDMS microfluidic chip. A 5mL suspension of 1um
polystyrene (PS) microspheres was prepared and loaded into a 10 mL syringe. The
inlet ports were connected to syringe pumps according to the selected flow parameters,
with prescribed inlet flow rates. The PS suspension syringe was connected to inlet
port 1 via tubing, and the flow was initiated at a fixed rate. Particle motion was
recorded using a high-speed camera and saved for analysis. Under identical parameter
settings, a numerical simulation model was constructed, with all configurations kept
constant except for the number of input particles, which was set to 200 to better
visualize particle distribution under different inlet ratios. A comparison between
experimental results and simulation trajectories (Supplementary Fig. 2) demonstrates
strong agreement, confirming the reliability of the numerical model for generating
training data for trajectory prediction.

Supplementary Note 2

To simplify the sequential data of continuous particle trajectories (i.e., two-
dimensional spatial coordinates over time), only the particle position at the module
exit—defined as the cross-section location at a fixed distance downstream of the
channel—is retained for each module. This position is represented as a one-
dimensional scalar along the cross-sectional width. Additionally, the particle outlet at
each branching junction is treated as a categorical label to avoid unphysical
predictions beyond the channel boundaries. The model also predicts the instantaneous
velocity of the particle at the cross-section, along with the transit time across the
module. A schematic of the predicted parameters is shown in Supplementary Fig. 3.

Here, O, denotes the outlet label, O, € {2,3,4}, D is the channel width at the

outlet, and d is the vertical distance from the particle to the left channel wall at the

module exit. The normalized outlet particle position is defined as O,=d/D.

Similarly, the inlet ratio I is defined as I, =d,/D,, where d; is the vertical distance

from the particle to the left wall at the module entry, and D; is the corresponding inlet
channel width for module/node i. Vy and V'y denote the particle velocity components
in the x and y directions at the outlet, respectively, and T is the time taken for the



particle to traverse from the module inlet to the exit location.

Supplementary Note 3

Deep learning was implemented in MATLAB using a multi-layer residual
backpropagation neural network to predict particle trajectories. The input layer
receives 20 features capturing the influence of flow conditions, channel geometry, and
particle properties on the trajectory. The output corresponds to a single node encoding
multiple outcomes, including the outlet label, particle position along the cross-section,
local flow velocity at the outlet, and transit time through the module.

For outlet label classification, categorical labels were transformed into one-hot
encoded vectors, mapping each class to an independent binary representation. This
avoids introducing numerical bias and facilitates the network's handling of discrete
categorical features. The dataset was subsequently normalized, randomly shuftled,
and split into training and testing subsets in an 8:2 ratio, enabling later evaluation of
classification accuracy on the test set. The network architecture comprises an input
layer with 20 neurons (encoding position ratios, flow conditions, channel structures,
and particle attributes), followed by 20 hidden layers constructed using residual
blocks. Each residual block contains two fully connected sublayers—the first with 20
neurons and the second with 25 neurons—and incorporates skip connections to
mitigate the degradation problem associated with deep architectures. ReLU activation
is applied to all hidden layers. The output layer contains three neurons (corresponding
to the three-bit one-hot encoding of outlet labels), equipped with a softmax activation
function to yield class probabilities. Cross-entropy loss was employed as the objective
function (Eq. 1), and model optimization was performed using the NADAM optimizer
with adaptive learning rate scheduling.

| & . )
CrossEntropy =——_ ylog(y,)+(1-y,)log(1-3,) (1)

n'io

Here, y; denote the ground truth of the i-th training instance and ﬁ is the

corresponding prediction, where n is the total number of samples. The NADAMs
optimizer, a refined variant combining the Adam and Nesterov Accelerated Gradient
(NAG) methods, enhances gradient updates by incorporating Nesterov momentum.
This allows the optimizer to anticipate the trajectory of parameter updates early
during training, enabling faster convergence and improved training stability. To
further accelerate convergence and improve computational efficiency, mini-batch
training with an appropriate batch size is employed. Supplementary Fig. 8 illustrates
the decrease in cross-entropy loss on the training set and the corresponding accuracy
trend on the test set during classification.

For the prediction of normalized position, outlet velocity, and particle arrival
time—formulated as regression tasks—the same normalization, shuffling, and train-
test split procedures are applied as in the classification task. The regression networks



adopt a similar architecture: 20 input neurons encoding features related to position
ratio, flow conditions, channel geometry, and particle properties. The networks
predicting position and arrival time comprise 20 residual layers, while the velocity
prediction network uses 10 residual layers. Each residual block contains two fully
connected layers with 50 and 100 neurons respectively, equipped with ReLU
activations. The output layers consist of a single neuron for position and time
prediction, and two neurons for velocity prediction (representing x- and y-direction
velocities). The models are trained using the L1 loss, minimized by the NADAMs
optimizer:

1 N
Ll=— =P 2
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where N is the total number of samples, y; denotes the ground truth, and ﬁ. is the

model prediction. Supplementary Fig. 9 shows the decrease in L1 loss during training
and the corresponding accuracy trend on the test set.

Supplementary Note 4

The microfluidic channel layout was retroactively designed based on predefined
particle trajectories or designated outlet positions. To reconstruct device structures
from the predicted sequence of trajectory nodes or the identified terminal node index,
the following assumptions were made:

1. Modules are assumed to be seamlessly connected, or any additional
interconnection length is negligibly small and thus treated as infinitesimal in the
analysis.

2. The inter-module connection segments are assumed to exert negligible
influence on the information received (/z) by the downstream module, which is
computed via a logical Oy operation based on the upstream state.

3. Inlet flow conditions are presumed to remain invariant, such that structural
modifications within the device affect only the local flow characteristics within
individual modules.

4. The geometric configuration of the channels is assumed not to perturb the
flow state at the interface between adjacent modules.

These assumptions ensure that:

1. Assumption 1 allows for consistent fluid velocity across connecting segments,
enabling the approximation of flow continuity between modules.

2. Assumption 2 safeguards the validity of spatial parameter transmission across
modules by isolating it from transitional segment effects.

3. Assumption 3 guarantees that particle trajectories are modulated solely by
internal geometric changes, independent of inlet disturbances.

4. Assumption 4 preserves the modular independence of local flow fields,
preventing unintended cross-influence via interface geometry.






Supplementary Figures
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Supplementary Fig. 1. Illustration of flow, channel and particle design parameters.
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Supplementary Fig. 2. Comparison between experimental and simulation results.

a Physical experiment. b Numerical simulation.
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Supplementary Fig. 3. Schematic illustration of output parameters.
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Supplementary Fig. 4. Ambiguous regions in trajectory classification.

Orange circles indicate regions prone to classification ambiguity, primarily arising from: a
particles entering adjacent branches within spatially close bifurcations, or b narrow high-curvature
regions near multiple outlet junctions that induce trajectory divergence.
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Supplementary Fig. 5. Workflow of manual and automated channel design.

Users can interactively assemble modular microchannel geometries in PathChip by combining
three base channel types, allowing them to generate trajectory-guided structures that meet
functional specifications under predefined flow field conditions. Manual forward design is
natively supported within PathChip without external dependencies. In contrast, automated inverse
design represents an extended functionality requiring integration of adjacency matrices and
circuit-based logic modules.
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Supplementary Fig. 6. Circuit configuration derived from adjacency matrix.

Each labeled node corresponds to an index in the adjacency matrix. A fixed 10 A current is
applied at the inlet, and voltmeters are used to measure voltage drops across resistors for current
computation. The initial circuit design assumes uniform resistance R=1Kk€2, disregarding length-

dependent effects of channel segments.
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Supplementary Fig. 7. Schematic of the experimental setup.
A diagrammatic overview of the physical platform used for flow field generation, particle tracking,
and validation.
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Supplementary Fig. 8. Training performance of the classification neural network.
a The optimized classification model exhibits a decreasing training loss over epochs. b Accuracy
on the test set improves progressively during training.
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Supplementary Fig. 9. Training performance of the regression neural network.
a The optimized regression model shows reduced training loss; this model is used to predict outlet
position ratio, outlet velocity, and time to arrival. b Accuracy on the test set increases as training

progresses.
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Supplementary Fig. 10. Main interface and functional layout of the application.
1. Initialization panel;

Visualization window;

panel.

2. Parameter configuration panel; 3. Parameter generation

5. Trajectory output panel; 6. Visualization assistance panel,

panel; 4.
7. Export



Supplementary Tables

Supplementary Tab. 1. Parameter settings and corresponding ranges.

No. Parameter Name Symbol Range  Unite Explanation
1 Inlet Ratio Iy 0~1 N/A The position .0 t partlcle‘s i
the cross section at the inlet
2 Inlet 1 Width W, 50~500 pm Width of channel 1
3 Inlet 2 Width W, 50~500  um Width of channel 2
4 Inlet 3 Width Ws 50~500  um Width of channel 3
5 Inlet 4 Width Wy 50~500  um Width of channel 4
6 Chamfer C 0/45 ° Chamfer angle of the joint
7 Inlet 1 Velocity 12 0.5~10  cm/s Inlet flow velocity of
channel 1
8§  Inlet2Velocity ¥, 0~10  cm/s Inlet flow velocity of
channel 2
9 Label 2 L, -0/ NA Mark channel 2 as
outflow/none/inflow
10 Inlet 3 Velocity V3 0~10 cm/s Inlet flow velocity of
channel 3
1 Label 3 Ly -0/ NA Mark channel 3 as
outflow/none/inflow
12 Inlet4 Velocity Vo  0~10 cmis  [metflowvelocity of
channel 4
13 Label 4 L -0/ NA Mark channel 4 as
outflow/none/inflow
. Angle between channel 1
14 Angle 1 A 30~150 and channel 2
. Angle between channel 1
15 Angle 2 A 0/90 and channel 3
. Angle between channel 1
16 Angle 3 As 30~150 and channel 4
17 Structure Type K 0/1/2 N/A  Channel structure type No.
18 Radius R 0~1000  pm Radius of curved channel



19  Particle Diameter Dp 0.5~20 pm Diameter of the particles

20  Particle Density p 0.5~1.5 g/cm3 Density of the particles

Note: The explicit formulation of I (Inlet Ratio) is provided in Supplementary Note 2. Definition

of particle position ratio at the outlet.

Supplementary Tab. 2. Sampled parameter set used for experimental validation.

No.  Param. Val. No.  Param. Val. No. Param. Val.
1 /4 (3“312) 8 L, -1 15 As 81(° )
2 W, (Lﬂ) 9 Vs (CIT?I /s) 16 K 0
3 Ws (LIHZ) 10 Ly 1 17 R (u(r)n)
O G By B D
5 C 0(° ) 12 Ly -1 19 p (gl/;g;)
6 14 (cn61/s) 13 A 91(° )
7 (CHOI/S) 4 4 0C)

Supplementary Tab. 3. Performance of PMPM regression for predicting particle motion

Parameter ~ Symbol R? RMSE Unit MAE Unit

Outlet

Posii Or 0.8254+0.002 0.114£0.006 N/A  0.022+0.007 N/A
os1tion

Velocity X Vy  0.956+0.011 0.013+0.002 m/s 0.005+0.002 m/s

Velocity Y Vy 0.9464+0.039 0.007+0.001 m/s 0.003+0.002 m/s

Passage

Ti T 0.775+0.112 0.022+0.012 s 0.006%+0.002 s
ime

Supplementary Tab. 4. Kirchhoff’s current and voltage equations derived from the
adjacency matrix in Supplementary Fig. 6.

The number of equations must be greater than or equal to the number of unknown branch currents
to ensure solvability. The listed equations are formulated into a linear system and solved in
MATLAB to obtain the magnitude and direction of each branch current.

No.  Kirchhoft’s Current Equition Kirchhoff’s Voltage Equition

1 I,=1-1, (I, +1,+1,+1,+I;)R=0



2 I,=1-1, (I, +1,+15+1,+15+1,)R=0

3 L,=1,-1, (L+L+1,+1,+1s+1,)R=0
4 I,=1 -1 (I, +1;+1,+1,+15+1,)R=0
5 L,=1,-1, (I4+1,+1,+1,+15+1,)R=0
6 L+1,=01+1, (I+1,+1,+1,+1,+1,)R=0
7 L+l,=1+1, (L+1,+1,+ 1 +1,+1,+1,)R=0
8 I+ =1+1, (L+L,+1,+1+1,+1,+1,)R=0
9 I,+1 =I+I, (L +L+1,+1,+1,+1,+1,)R=0
10 I +1,=1,+1, (I+1,+1,+1,+1,+1,+1,)R=0

Supplementary Tab. 5. The number of modules and the corresponding AID algorithm
computation time

Modules Number  Average Computation Time (s)  Time Standard Deviation (s)

10 0.710 0.04295
50 0.897 0.04448
100 1.025 0.04625
500 2.057 0.47286
1000 2.995 0.48312

5000 18.821 1.80655




