Supplementary Information

Development of improved MnO_x nanoparticles for Oxygen Reduction Reaction

Marco A. H. Vogt,^a Alisson S. Thill,^a Carlos Escudero,^b Marcus V. Castegnaro,^a Fabiano Bernardi^{a*}

^a Programa de Pós Graduação em Física, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil

^b ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, Spain

Figure S1 – β -MnO₂ (110) unit cell model used in the kMC simulation.

Figure S2 - Mn_3O_4 (110) unit cell model used in the kMC simulation.

Kinetic Model

The pre-exponential factor for a surface reaction is:¹

$$k_0 = \frac{k_b T}{h}$$

where k_b is the Boltzmann constant and h is the Planck constant. The pre-exponential factor for the adsorption process was taken as:

$$k_0 = \frac{pA}{\sqrt{2\pi k_b mT}} \tag{3.3}$$

where p is the gas partial pressure, A is the site area, and m is the gas molecular weight.

For the desorption process, there is an approximation² for a non-activated process given by:

$$k_0 = \left(\frac{k_b T}{h}\right) \exp\left\{\frac{0.35^0 g_{as}}{R} + 3.3 - \left(\frac{1}{3}\right) \left\{18.6 + \ln\left[\left(\frac{m}{m_{Ar}}\right)^{\frac{3}{2}} \left(\frac{T}{298}\right)^{\frac{5}{2}}\right]\right\}\right\}$$
(3.4)

where S is the gas entropy and m_{Ar} is the Ar molecular weight. The gas entropy was extracted from NIST database.³

The chemical equations used for the β -MnO₂ (110) are described below.²

Unlike the previous case, there are three possible sites – a Mn4 site and two distinct O sites– with different chemical environments and, consequently, distinct reactivities. A total number of 24300 sites (8100 of each type) were considered in the simulation. The ORR reaction pathway for the Mn_3O_4 (110) surface is shown below, where *2, *3 and # stand for O2c, O3c and Mn4, respectively.⁴

1)
$$OH_{2}^{*} + OH_{2}^{*} \leftrightarrows H_{2}O_{2}^{*} + O_{2}^{*}$$

2) $OH_{3}^{*} + OH_{3}^{*} \leftrightharpoons H_{2}O_{3}^{*} + O_{3}^{*}$
3) $H_{2}O_{2}^{*} \leftrightharpoons H_{2}O(g) + *_{2}^{*}$
4) $H_{2}O_{3}^{*} \leftrightharpoons H_{2}O(g) + *_{3}^{*}$
5) $O_{2}(g) + *_{2} \leftrightharpoons O_{2}^{*}2$

6)
$$O_2(g) + *_3 \subseteq O_2 *_3$$

7) $O_2 *_2 + \# \subseteq O *_2 + O \#$
8) $HO *_2 + O \# \subseteq O *_2 + O H \#$
9) $O_2 *_3 + OH *_3 + \# \subseteq O *_3 + O *_3 + O H \#$
10) $OH *_2 + OH \# \subseteq O *_2 + H_2 O \#$
11) $OH *_3 + OH \# \subseteq O *_3 + H_2 O \#$
12) $H_2 O \# \subseteq H_2 O(g) + \#$

The dissociative adsorption of H_2 on the O sites leads to two adsorbed OH species on each O site, as occurring for the MnO₂ (001) surface. The following steps (eq. 1-6) occurring in both O sites are similar to those discussed for MnO₂ (001) surface. However, the presence of the Mn4 site allows the diffusion of O and H between the Mn4 and O3c or O2c site (eq 7-12). As a result, H₂O molecules are formed on (and desorbed from) all three sites. The activation energy values were extracted from literature,^{4,5} and the pre-exponential factors were calculated as discussed in the previous section.

Figure S3 - Textural analysis of the samples with (a) N_2 adsorption-desorption isotherms and (b) BJH pore size distributions.

Table S1 - Specific surface area, pore volume, and pore size values of the samples synthesized.

Sample	Surface area (m ² /g)	Pore volume (cm ³ /g)	Pore size (nm)
O-MnO ₂	91	0.16	7.0
D-MnO ₂	80	0.37	18.4
D-Mn ₂ O ₃	122	0.19	6.3

Table S2 – Parameters obtained from the Rietveld refinement results of the O-MnO₂ and D-Mn₂O₃ samples.

		O-MnO ₂	D-Mn ₂ O ₃
	amount (%)	4.5	-
	a (Å)	7.39	-
γ-MnO ₂	b (Å)	4.28	-
	c (Å)	3.08	-
	size (nm)	16	-
β-MnO ₂	amount (%)	81.9	-
	a (Å)	4.35	-
	b (Å)	4.35	-
	c (Å)	2.85	-
	size (nm)	22	-
ε-MnO ₂	amount (%)	13.6	-
	a (Å)	2.75	-
	b (Å)	2.75	-
	c (Å)	4.39	-
	size (nm)	28	-
Mn ₂ O ₃	amount (%)	-	100
	a (Å)	-	9.4
	b (Å)	-	9.4
	c (Å)	-	9.4
	size (nm)	-	21

Figure S4 – O 1s XPS spectra of the samples synthesized.

Figure S5 – TEM image of the D-Mn_2O_3 sample after reduction + ORR treatments at 500 $^{\rm o}C.$

Figure S6 – Typical fit result of XANES measurement at Mn K edge of $O-MnO_2$ sample at 500 °C under H₂ atmosphere after 7.8 min from the beginning of the reduction treatment.

References

1 D. Kopac, M. Hus, M.Ogrizek, B. Likozar, J. Chem. Phys. C, 2017, 121, 17941-19949.

2 H. Yuan, N. Sun, J. Chen, J. Jin, H. Wang, P. Hu, ACS Catal., 2018, 8, 9269-9279.

3 National Institute of Standards and Technology (NIST), *NIST Chemistry WebBook*, <u>https://webbook.nist.gov/chemistry/</u>.

4 M. Yang, H. Yuan, H. Wang, P. Hu, Sci. China Chem., 2018, 61, 457-467.

5 X. Yu, X. Zhang, S. Wang, Appl. Surf. Sci., 2015, 353, 973-978.