Supplementary Information (SI) for RSC Applied Interfaces. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Solvent-driven sod-ZIF-8 ↔ ZIF-C phase transformation preserves nucleic acid functionality for gene delivery

Shakil Ahmed Polash,^{1,2} Arpita Poddar,³ Francesco Carraro,⁴ Gary Bryant,² Paolo Falcaro^{4*} and Ravi Shukla^{1,2,5*}

¹Sir Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, RMIT University, Melbourne, Victoria 3000, Australia

* Corresponding author:

Paolo Falcaro (paolo.falcaro@tugraz.at)

Ravi Shukla (ravi.shukla@rmit.edu.au)

²School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia

³Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3350, Australia

⁴Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz 8010, Austria

⁵Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3000, Australia

Table S1. Comparison of liposomal and ZIF-based (MOF) non-viral delivery systems.

Feature	Liposomal systems	ZIF based (MOF) systems	Ref.
Clinical status	Clinically validated; used in mRNA and siRNA therapeutics	Emerging platform; preclinical development	[1, 2]
Biocompatibility	Well- characterized and generally high	Good, but dependent on metal-ligand chemistry and cargo interactions	[1-3]
Colloidal stability	Can be limited in serum-rich environments	Typically robust; stability varies with phase/solvent	[4, 5]
Cargo protection	Moderate; potential for leakage or enzymatic degradation	Strong encapsulation protects nucleic acids	[5]
Release mechanism	Membrane fusion; tunable with formulations	Intrinsic pH-responsive degradation enables controlled release	[4, 5]
Storage needs	Often require cold-chain stability	Generally stable at room temperature	[6, 7]
Loading capacity	Moderate	High due to porous crystalline structure	[5]
Tunability	Through lipid composition and surface modification	Through metal-ligand chemistry, surface chemistry, porosity, and crystal phase	[4, 5]
Strengths	Clinically proven, versatile, biocompatible	Robust structure, strong cargo protection, pH-responsive release, high degree of flexibility and customizability	[4, 5]
Current limitations	Stability and leakage challenges; storage constraints	Phase behaviour under physiological conditions is still being fully characterized	[4, 5]

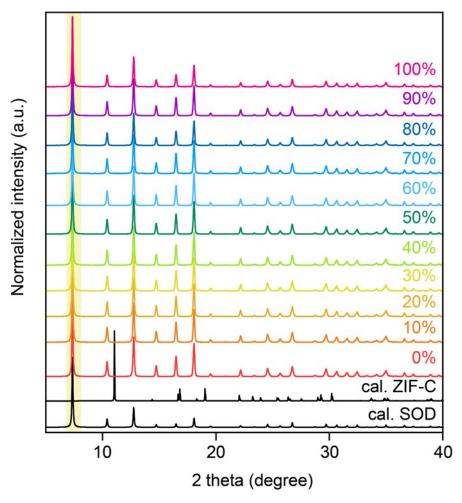


Fig S1. X-ray diffraction of DNA@ZIF synthesized using precursors made in ethanol.



Fig S2. SEM images of DNA@ZIF were prepared with ethanolic 2HmIm and $Zn(OAc)_2$ and washed with different % of water in ethanol. Scale bar 500 nm.

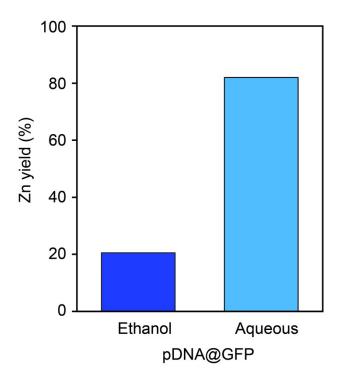
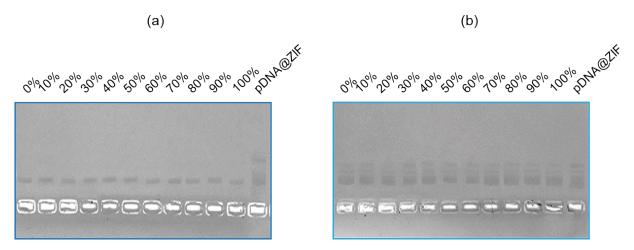



Fig S3. Zn yield (%) in DNA@ZIF prepared using organic (i.e., ethanol) and inorganic (i.e., water) conditions.

Fig S4. Agarose gel electrophoresis of DNA@ZIF prepared with (a) alcoholic and (b) aqueous precursors. The precipitates were washed with 0-100% of water in ethanol.

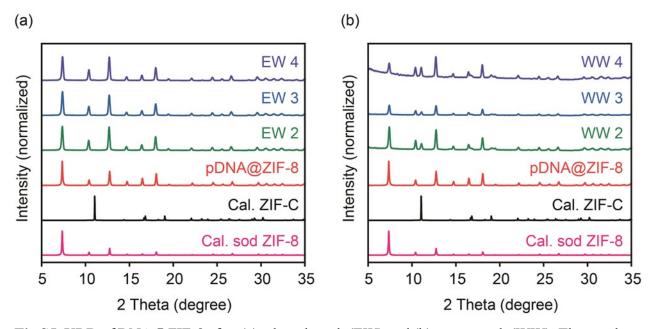
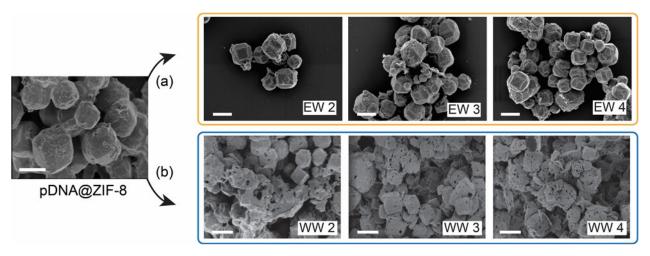



Fig S5. XRD of DNA@ZIF-8 after (a) ethanol wash (EW) and (b) water wash (WW). The numbers represent the washing steps.

Fig S6. SEM of DNA@ZIF-8 after (a) ethanol wash (EW) and (b) water wash (WW). The numbers represent the washing steps. Scale bar refers 500 nm.

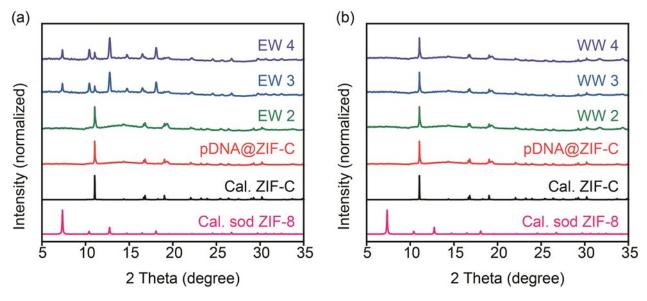


Fig S7. XRD of DNA@ZIF-C after (a) ethanol wash (EW) and (b) water wash (WW). The numbers represent the washing steps.

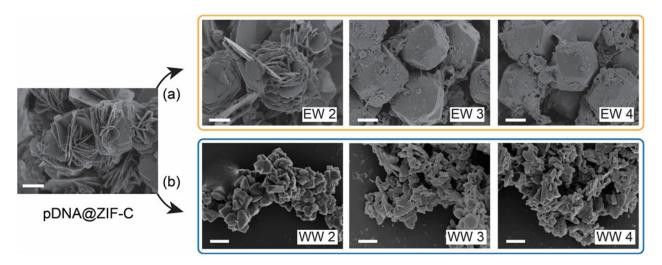


Fig S8. SEM of DNA@ZIF-C after (a) ethanol wash (EW) and (b) water wash (WW). The numbers represent the washing steps. Scale bar refers 500 nm.

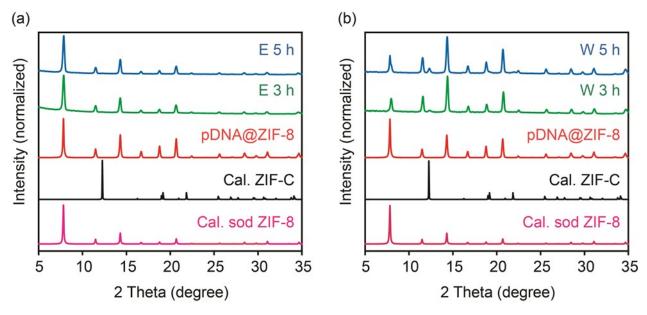


Fig S9. XRD of DNA@ZIF-8 after (a) ethanol (E) and (b) water (W) incubation.

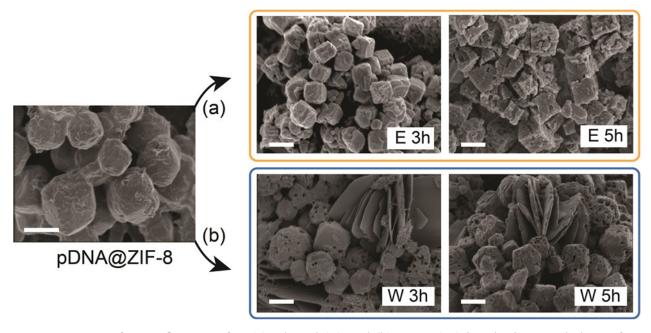


Fig S10. SEM of DNA@ZIF-8 after (a) ethanol (E) and (b) water (W) incubation. Scale bar refers 500 nm.

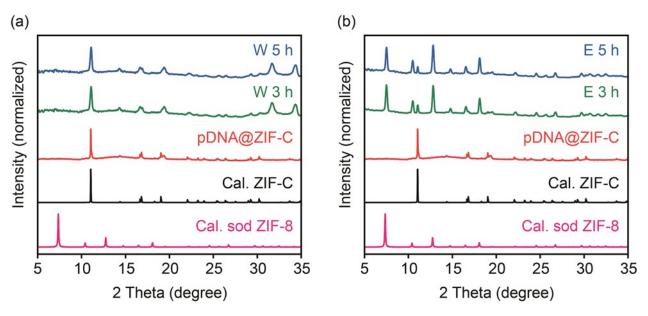


Fig S11. XRD of DNA@ZIF-C after (a) ethanol (E) and (b) water (W) incubation.

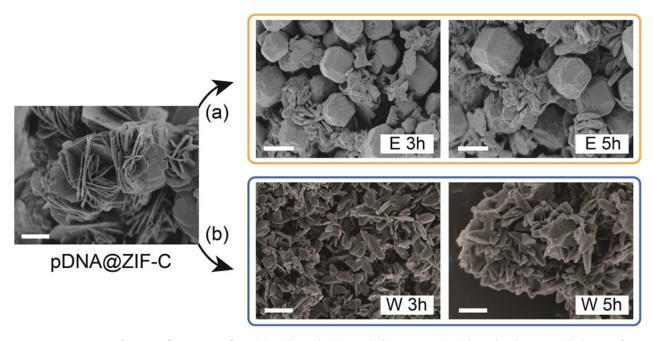
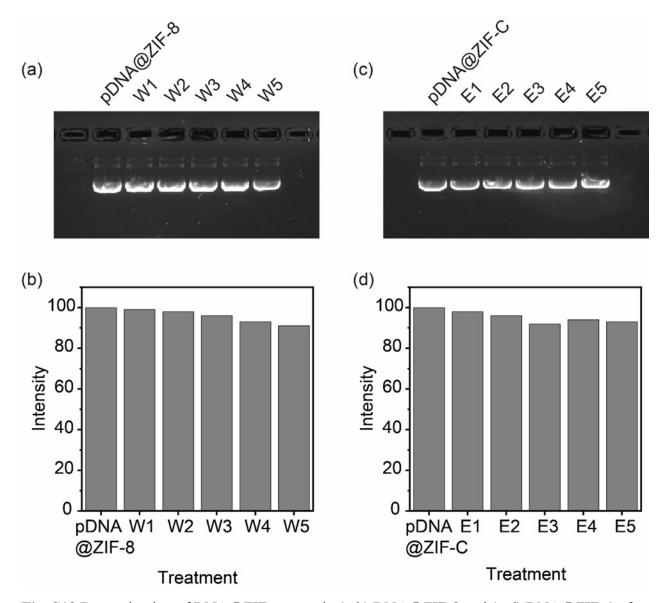
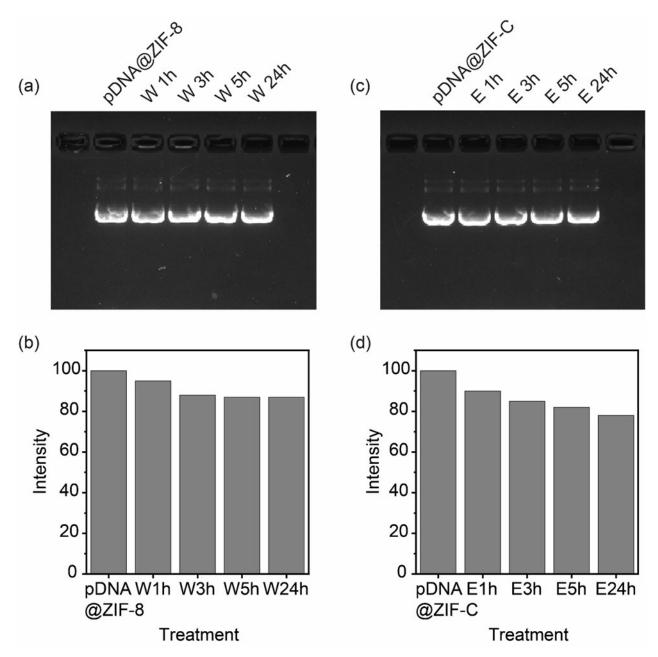




Fig S12. SEM of DNA@ZIF-C after (a) ethanol (E) and (b) water (W) incubation. Scale bar refers 500 nm.

Fig. S13 Determination of DNA@ZIF content in (a-b) DNA@ZIF-8 and (c-d) DNA@ZIF-C after subsequent 5-times water (W) and ethanol (E) wash. Agarose gel electrophoresis of (a) DNA@ZIF-8 and (c) DNA@ZIF-C after 5 times washing with water and absolute ethanol, respectively. The DNA@ZIF band intensity of DNA@ZIF-8 and DNA@ZIF-C after corresponding treatment was plotted in (b) and (d).

Fig S14. Determination of DNA@ZIF content in (a-b) DNA@ZIF-8 and (c-d) DNA@ZIF-C after incubation in (a) water (W) and (b) ethanol (E) for different points. Agarose gel electrophoresis of (a) DNA@ZIF-8 and (c) DNA@ZIF-C after incubating in water and absolute ethanol, respectively. The DNA band intensity in DNA@ZIF-8 and DNA@ZIF-C after the corresponding treatment was plotted in (b) and (d).

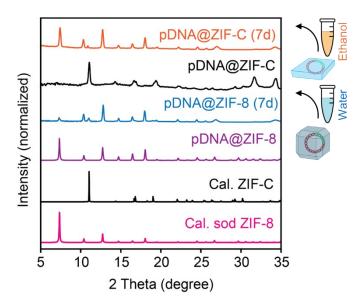


Fig S15. XRD of 7-days aged ZIF biocomposites.

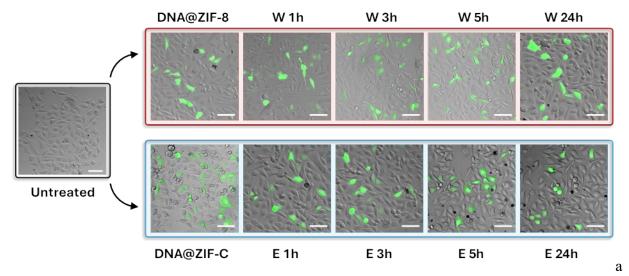


Fig S16. PC-3 cells transfected with GFP plasmid. Scale bar refers $100 \mu m$.

References:

- 1. Shi, Y., Shi, M., Wang, Y., You, J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. *Signal Transduction and Targeted Therapy*, 2024, 9, 322.
- Wang, A., Walden, M., Ettlinger, R., Kiessling, F., Gassensmith, J.J., Lammers, T., Wuttke, S., Peña, Q. Biomedical metal-organic framework materials: perspectives and challenges. *Advanced Functional Materials*, 2024, 34, 2308589.
- 3. Hoop, M., Walde, C.F., Riccò, R., Mushtaq, F., Terzopoulou, A., Chen, X.Z., deMello, A.J., Doonan, C.J., Falcaro, P., Nelson, B.J., Puigmarti-Luis, J., Pané, S. Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. *Applied Materials Today*, 2018, 11, 13-21.
- 4. Nasri, N., Azad, M., Mehrabi, Z., Dini, G., Marandi, A. Metal-organic frameworks for biomedical applications: bridging materials science and regenerative medicine. *RSC Advances*, 2025, 15, 34481-34509.
- 5. Eugster, R., P. Luciani, Liposomes: Bridging the gap from lab to pharmaceuticals. *Current Opinion in Colloid & Interface Science*, 2025. 75, 101875.
- 6. Păun, C., Motelică, L., Ficai, D., Ficai, A., Andronescu, E. Metal-organic frameworks: Versatile platforms for biomedical innovations. *Materials*, 2023, 16, 6143.
- 7. Choudhury, A., Kirti, A., Lenka, S.S., Naser, S.S., Sinha, A., Kumari, S., Kaushik, N.K., Ghosh, A., Verma, S.K. Strategic advances in liposomes technology: translational paradigm in transdermal delivery for skin dermatosis. *Journal of Nanobiotechnology*, 2025, 23, 576.