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Fig. S1 NMR of C20 diacid produced via Grubbs-mediated metathesis. Integration at 5 ppm (0.16) and 6 ppm (.07) are unreacted terminal C11 and peak at 5.5.
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Fig. S2 a) NMR of PA66-MULCH-5 polyamide showing retention of alkene after polymerization and melt processing. Integration at 5.5 ppm is the product and is compared to the

hydrogen alpha to the amine in HMDA at 3.8 ppm. b) NMR of PA66-MULCH-5, which has undergone an epoxidation reaction. The integration of the 3.8 HMDA peak has decreased,

demonstrating a decreased amount of alkene post-reaction.
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(a) PA66-Blend treatment with tetrakis
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(b) PA66-Blend treatment with dodecanethiol
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(c) PA6-MULCH-10 treatment with tetrakis
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(d) PA6-MULCH-10 treatment with dodecanethiol
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(e) PA66 treatment with tetrakis
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(f) PA66 treatment with dodecanethiol
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(g) PA6 treatment with tetrakis
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(h) PA6 treatment with dodecanethiol

Fig. S3 NMR results of fiber modification experiments. Compared to the spectra presented in Figure S2 these NMR spectra show the lack of a double bond at 5.5 ppm, demonstrating

consumption of the alkene in thiolene-click experiments.
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(c) PA66-MULCH-5 after thermal processing into dogbones
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Fig. S4 The full spectra for the epoxidation of the MULCH polyamide, varied by concentration of MULCH addition. The decrease of the alkene between the original and its subsequent

reaction shows the reactivity of the alkene in solid-state reactions.
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Fig. S5 GPC chromatagram of PA66, PA66-MULCH-5, PA66-MULCH-10, and PA66-MULCH-40 against a PMMA standard.
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Fig. S6 GPC chromatagram of PA66-Blend and PA6-MULCH-10 compared to industrial samples
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Fig. S7 Visual results of the PA6-MULCH-10. The glossy sheen and the white color are indicative of a high molecular weight polymer with no oxidation occurring during polymerization.

The molecular weight was corroborated with GPC and demonstrated the effective polymerization
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Fig. S8 DSC of pure PA66, PA66-MULCH-5, and PA66-MULCH-10.
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Fig. S9 TGA of pure PA66, PA66-MULCH-5, and PA66-MULCH-10
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Fig. S10Weight changes of fibers after 24 hours in water. Fibers were grouped into AABB (top) type and AB (bottom) type water uptake graphs. Each graph contains the weight change

for all four types of fibers (PA66, PA6, PA66-Blend, and PA6-MULCH-10) and their tetrakis and dodecanethiol-treated states.
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Fig. S11 The four different fiber types used in post-polymerization functionalization studies. From left to right is PA66-Blend, PA6-MULCH-10, PA66, and PA6. The yellow color on the first

spool is from the concentrated MULCH incorporation diluted by extruding it with PA66. The brown color of the second spool comes from oxidation during the melt polymerization stage.

Journal Name, [year], [vol.],



0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

Strain (mm/mm)

St
re

ss
(M

Pa
)

PA66
PA66-MULCH-5
PA66-MULCH-10

Fig. S12 Tensile test of pure PA66 and PA66-MULCH-5 and PA66-MULCH-10
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Fig. S13 Tensile test of four kinds of fiber; industrial PA6 and PA66, PA66-Blend, and PA6-MULCH-10. Each fiber was modified with either dodecanthiol or tetrakis. They were bundled

into batches of 5 fibers then tested on a universal testing machine.
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(a) ANOVA Results for neat dogbones

Property F-statistic p-value
UTS 6.270 0.033890
Elongation at yield 0.200 0.823644
Elongation at break 0.120 0.888825

(b) ANOVA Results for fibers

Property F-statistic p-value
UTS 37.005 0.000049
Elongation at yield 12.365 0.002258
Elongation at break 11.847 0.002590

1

Fig. S14 Statistical analysis using ANOVA test for mechanical data. Table (a) includes the values for the neat dogbones (PA66, PA66-MULCH-5, and PA66-MULCH-10) while (b) includes

values for fibers (PA6, PA66, PA6-MULCH-10, PA66-Blend-10).
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