
1

Supplementary information for:

Cryopreservation and Post-Thaw Differentiation of Monocytes

Enabled by Macromolecular Cryoprotectants which Restrict

Intracellular Ice Formation

Natalia Gonzalez-Martinez,a,b,c Ruben M. F. Tomás,d Akalabya Bissoyi,b,c Agnieszka Nagorska,d

Alexandru Ilie,b,c and Matthew I. Gibsonb,c,*

aDepartment of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry,

UK.
bManchester Institute of Biotechnology, University of Manchester, 131 Princess Street,

Manchester M1 7DN, U.K.
cDepartment of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL,

U.K.
dCryologyx Ltd, Venture Centre, University of Warwick Science Park, Coventry CV4 7EZ,

U.K.

*Corresponding Author Email, matt.gibson@manchester.ac.uk

Supplementary Information (SI) for RSC Applied Polymers.
This journal is © The Royal Society of Chemistry 2025

mailto:matt.gibson@manchester.ac.uk

2

Supplementary information

Supplementary Method 1: Threshold-based segmentation and Monte Carlo simulations
to quantify intracellular ice

from PIL import Image

import numpy as np

from skimage import measure

import matplotlib.pyplot as plt

def calculate_red_and_combined_blue(image_array, size_threshold=50, iterations=50,

threshold_variation=10):

 """

 Calculate the area percentages for red and combined blue (light + dark blue) regions in

an image,

 with statistical analysis using Monte Carlo simulation.

 """

 base_red_thresh = {"r_min": 200, "g_max": 100, "b_max": 100}

 base_blue_thresh = {"r_max": 100, "g_max": 150, "b_min": 100}

 red_percentages = []

 blue_percentages = []

 for _ in range(iterations):

 red_thresh = {

3

 "r_min": base_red_thresh["r_min"] + np.random.randint(-threshold_variation,

threshold_variation),

 "g_max": base_red_thresh["g_max"] + np.random.randint(-threshold_variation,

threshold_variation),

 "b_max": base_red_thresh["b_max"] + np.random.randint(-threshold_variation,

threshold_variation),

 }

 blue_thresh = {

 "r_max": base_blue_thresh["r_max"] + np.random.randint(-threshold_variation,

threshold_variation),

 "g_max": base_blue_thresh["g_max"] + np.random.randint(-threshold_variation,

threshold_variation),

 "b_min": base_blue_thresh["b_min"] + np.random.randint(-threshold_variation,

threshold_variation),

 }

 red_mask = (image_array[:, :, 0] >= red_thresh["r_min"]) & (image_array[:, :, 1] <=

red_thresh["g_max"]) & (image_array[:, :, 2] <= red_thresh["b_max"])

 combined_blue_mask = (image_array[:, :, 0] <= blue_thresh["r_max"]) &

(image_array[:, :, 1] <= blue_thresh["g_max"]) & (image_array[:, :, 2] >=

blue_thresh["b_min"])

 red_area = np.sum(red_mask)

 combined_blue_area = np.sum(combined_blue_mask)

 total_area = red_area + combined_blue_area

4

 if total_area > 0:

 red_percentages.append((red_area / total_area) * 100)

 blue_percentages.append((combined_blue_area / total_area) * 100)

 results = {

 "red_mean": np.mean(red_percentages),

 "red_std": np.std(red_percentages),

 "blue_mean": np.mean(blue_percentages),

 "blue_std": np.std(blue_percentages),

 }

 return results

def visualize_with_text_on_top(image_array, results, output_file=None):

 """

 Visualize the image with borders and statistics displayed as text on top.

 """

 red_thresh = {"r_min": 200, "g_max": 100, "b_max": 100}

 blue_thresh = {"r_max": 100, "g_max": 150, "b_min": 100}

 red_mask = (image_array[:, :, 0] >= red_thresh["r_min"]) & (image_array[:, :, 1] <=

red_thresh["g_max"]) & (image_array[:, :, 2] <= red_thresh["b_max"])

5

 combined_blue_mask = (image_array[:, :, 0] <= blue_thresh["r_max"]) &

(image_array[:, :, 1] <= blue_thresh["g_max"]) & (image_array[:, :, 2] >=

blue_thresh["b_min"])

 red_contours = measure.find_contours(red_mask.astype(int), 0.5)

 blue_contours = measure.find_contours(combined_blue_mask.astype(int), 0.5)

 fig, ax = plt.subplots(figsize=(8, 8))

 ax.imshow(image_array)

 ax.axis('o[')

 for contour in red_contours:

 ax.plot(contour[:, 1], contour[:, 0], color='black', linewidth=1)

 for contour in blue_contours:

 ax.plot(contour[:, 1], contour[:, 0], color='black', linewidth=1)

 # Add text on top of the image

 plt.text(0.5, 1.05,

 f"Red: {results['red_mean']:.2f}% ± {results['red_std']:.2f}% | Blue:

{results['blue_mean']:.2f}% ± {results['blue_std']:.2f}%",

 fontsize=12, ha='center', transform=ax.transAxes)

 if output_file:

6

 plt.savefig(output_file, dpi=300, bbox_inches='tight')

 plt.show()

General workflow

Replace these variables with your file paths

image_path = "your_image_path_here.jpg" # Replace with your image path

output_path = "your_output_path_here.jpg" # Replace with your output file path

Load the image

image = Image.open(image_path).convert("RGB")

image_array = np.array(image)

Perform the analysis

results = calculate_red_and_combined_blue(image_array, size_threshold=50,

iterations=50, threshold_variation=10)

Visualize with results on top

visualize_with_text_on_top(image_array, results, output_file=output_path)

7

Supplementary Figures

Supplementary Figure 1 Full dataset of well-to-well variability in THP-1 cells cryopreserved

in 96-well plates with 3 different cryopreservation formulations. Data was obtained using the

Trypan Blue exclusion assay. Data represented as mean ± SD. 3 biological replicates (i.e. 3

different plates) were assessed.

Supplementary Figure 2 Representative dot plots from time-course apoptosis analysis of

THP-1 cells after cryopreservation in (A) cryovials or (B) 96-well plates. For (A) cells were

cryopreserved with either 5 % DMSO-only or 5 % DMSO + PA. For (B) 5 % DMSO-only and

C2C3C4C5C6C7C8C9
C10E2E3E4E5E6 E7 E8E9

E10G2G3G4G5G6G7G8

0

25

50

75

100

Well Identity

%
 C

el
l R

ec
ov

er
y

5% DMSO CryoStor® CS5 5% DMSO + 40 mg.mL-1PA + IN

8

5 % DMSO + PA + IN were used instead. Analysed using flow cytometry. FITC (x-axis)

represents Annexin V-FITC fluorescence and PerCP (y-axis) denotes Propidium Iodide.

Supplementary Figure 3 Cryo-Raman microscopy of THP-1 cells cryopreserved in 10 %

DMSO. The top row shows brightfield microscopy images. The middle row shows heat maps

rendered from characteristic Raman spectra signals of ice and water; water is depicted in dark

blue and ice in light blue. White dashed line represents the cell boundaries. The bottom row

shows threshold-based segmentation and Monte Carlo simulation results, based on the outlined

areas, to quantify intracellular ice or water within cells. Ice is depicted in red and water in blue.

Analysis performed using Python libraries Pillow, NumPy, scikit-image and MatPlotLib.

9

Supplementary Figure 4 Cryo-Raman microscopy of THP-1 cells cryopreserved in 5 %

DMSO. The top row shows brightfield microscopy images. The middle row shows heat maps

rendered from characteristic Raman spectra signals of ice and water; water is depicted in dark

blue and ice in light blue. White dashed line represents the cell boundaries. The bottom row

shows threshold-based segmentation and Monte Carlo simulation results, based on the outlined

areas, to quantify intracellular ice or water within cells. Ice is depicted in red and water in blue.

Analysis performed using Python libraries Pillow, NumPy, scikit-image and MatPlotLib.

10

Supplementary Figure 5 Cryo-Raman Spectroscopy of THP-1 cells cryopreserved in 5 %

DMSO + 40 mg mL polyampholyte. The top row shows brightfield microscopy images. The

middle row shows heat maps rendered from Raman spectra based on characteristic signals of

ice and water; water is depicted in dark blue and ice in light blue. White dashed line represents

the cell boundaries. The bottom row shows threshold-based segmentation and Monte Carlo

simulation results, based on the outlined areas, to quantify intracellular ice or water within cells.

Ice is depicted in red and water in blue. Analysis performed using Python libraries Pillow,

NumPy, scikit-image and MatPlotLib.

11

Supplementary Figure 6 Representative dot plots from time-course apoptosis analysis using

appropriate assay controls. Non-frozen THP-1 cells served as the negative control of the assay

(top row) showing negligible apoptosis. THP-1 cells treated with 1 µM staurosporine for 4 h

served as the positive control of apoptosis, showing apoptotic progression after 24 h. Analysed

using flow cytometry. FITC (x-axis) represents Annexin V-FITC fluorescence and PerCP (y-

axis) denotes Propidium Iodide.

12

Supplementary Figure 7 Gating strategy and size (FSC) and granularity (SSC) plots following

THP-1 differentiation. (A) Initial gating was based in FSC and SSC characteristics, to exclude

debris. Doublets were excluded by plotting FSC-A vs FSC-H from this initial gating population.

Calculating viability (using PI) verified the initial FSC/SSC gating strategy by backgating to

identify and avoiding inclusion of membrane damaged cells. (B) FSC vs SSC flow cytometry

plots of non-frozen controls and THP-1 cells cryopreserved with either 5 % DMSO or 5 %

DMSO + PA + IN.

Supplementary Figure 8 Histogram depicting representative raw median CD14 fluorescence

intensities in undifferentiated and differentiated THP-1 cells. Non-frozen control shown as light

(undifferentiated) and dark (PMA-treated) blue. Cells cryopreserved with 5 % DMSO + PA

shown as pink (undifferentiated) and purple (PMA-treated).

