SUPPLEMENTARY INFORMATION

Bioinstructive Polymer Fibre Mats to Reduce Bacterial Pathogen Colonisation

Joseph Sefton^{a+}, Michael P. Avery^{b+}, Jean-Frédéric Dubern^c, Mohammad Ghasemzadeh-Hasankolaei^d, Rahul Tiwari^d, Amir M Ghaemmaghami^d, Morgan R. Alexander^f, Paul Williams^c, Derek J. Irvine^{a,g}, Jonny J. Blaker^{b,h}, Adam A. Dundas^{a*}

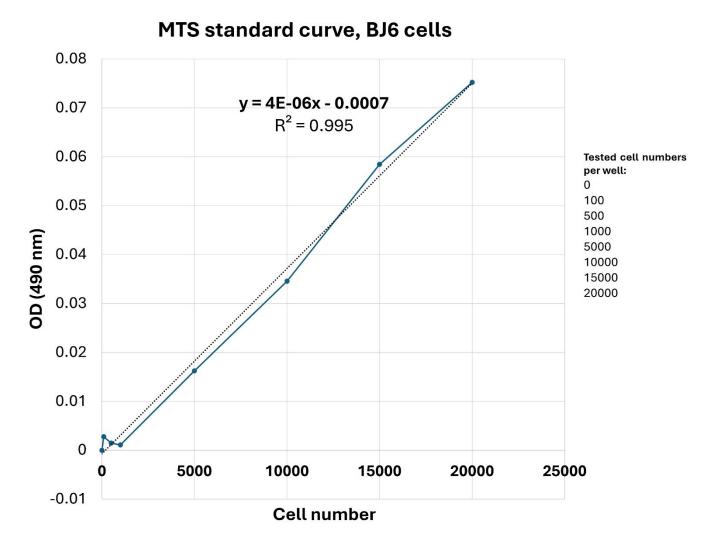


Figure S1: Standard curve for the MTS proliferation assay. Passage 7 cells seeded at 0, 100, 500, 1000, 5000, 10000, 15000 and 20000 cells per well in a 24 well plate. MTS reagent was added, and the optical density of aliquots were measured at 490 nm and the average used to plot the standard curve

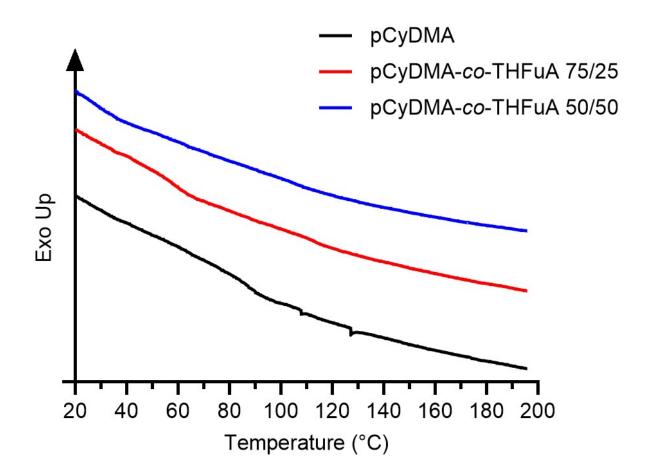


Figure S2: Differential scanning calorimetry results for pCyDMA, pCyDMA-co-THFuA 75/25 and pCyDMA-co-THFuA 50/50.

Supplementary Information available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

^{a.} Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK

^{b.} Henry Royce Institute, The University of Manchester, Manchester, M13 9PL, UK

^c National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, NG7 2RD, UK

d. School of Life Sciences, University of Nottingham, NG7 2RD, UK

^{e.} Camstent Ltd, The Exchange, Colworth Science Park, Bedford, MK44 1LZ

f. Advanced Materials & Healthcare Technologies, School of Pharmacy, University of Nottingham, NG7 2RD, UK

⁹ Centre for Additive Manufacturing, The University of Nottingham, Nottingham, NG7 2RD

h. Department of Materials, The University of Manchester, Manchester, M13 9PL,

[†] These authors contributed equally to the manuscript. E-mail: adam.dundas1@nottingham.ac.uk

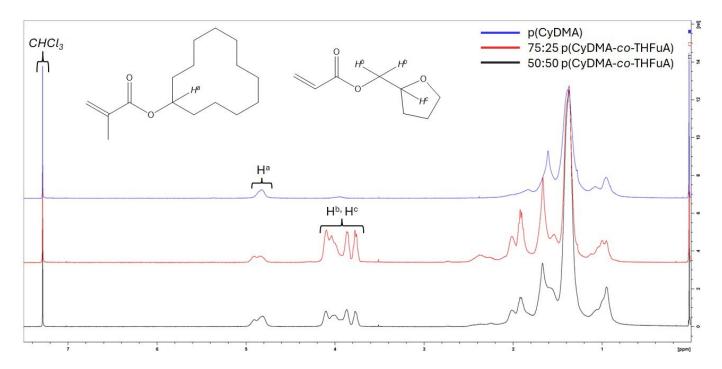


Figure S3: Stacked ¹H NMR spectra for p(CyDMA), 75:25 and 50:50 p(CyDMA-co-THFuA) showing the characteristic resonances of CyDMA and THFuA that were used for analysis

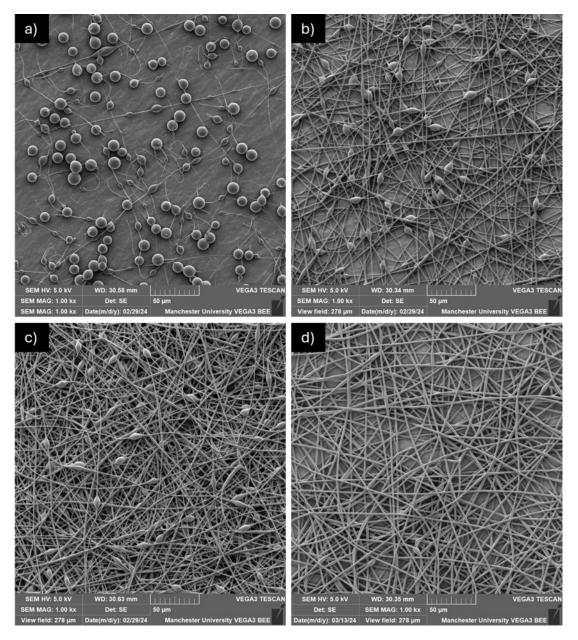


Figure S4: Scanning electron micrographs showing improvement in fibre formation from a 20% w/v solution of pCyDMA-co-THFuA (50:50) in a) DCM, b) 6.5 :1 DCM:EtOH, c) 4:1 DCM:EtOH, and d) 2:1 DCM:EtOH. All electrospinning experiments were performed with a –20 kV emitter voltage and a +1 kV collector voltage, solution flow rate of 3.5 ml h⁻¹ with a working distance of 240 mm. All images are taken at 1000× magnification and scale bars represent 50 μ m.

Table S1: Average fibre diameter of pCyDMA-co-THFuA 50:50 spun under the same conditions from varying DCM:EtOH solvent mixes as determined from the micrographs in Figure S3. Data from 100 fibres in a single image. For fibre measurements, bead diameters were not considered

DCM:EtOH	Average Fibre Diameter	Standard Deviation
	(µm)	(μm)
1:0	N/A	N/A
6.5:1	1.28	0.35
4:1	1.36	0.36
2:1	1.88	0.24

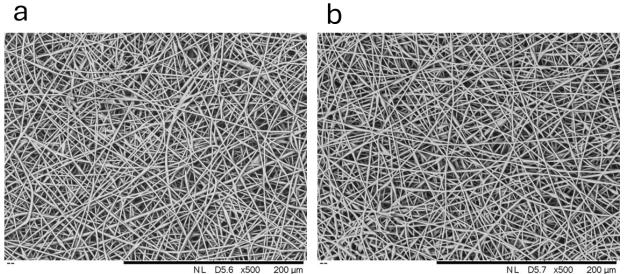


Figure S5: SEM images showing bio-instructive CyDMA-co-THFuA (50:50) polymer fibres (a) before gamma sterilisation and (b) after gamma sterilisation with a dose between 28.00 and 32.89 kGy.

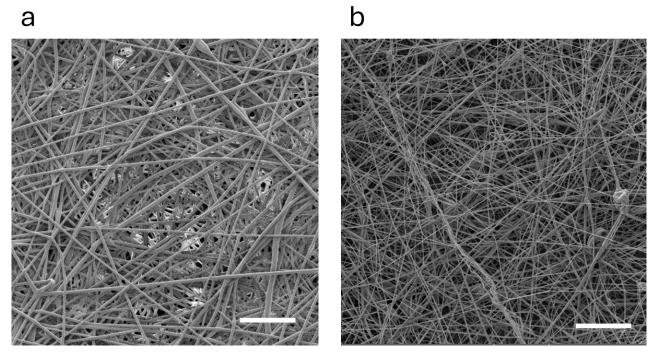


Figure S6: SEM images showing bio-instructive fibres used in biological studies (a) CyDMA-co-THFuA (50:50) 2.28 \pm 0.65 μ m (b) PLA fibres 1.20 \pm 0.39 μ m. Measurements were taken from N = 400 fibres. Scale bar represents 50 μ m.