Application of a Multifunctional Liquid Crystal Material in Colorful PEDOT:PSS/Si Heterojunction Solar Cells

Zheng Zhou^{abc}, Shibo Chen^d, Yingming Shen^c, Juan Wang^{ab}, Guijun Zhang^{ab}, Yang Shi^{ab}, Haixia Wu^{ab}, Jingjing Luo^{ab,}, Xiaohong Cheng*^d, Yu Yang^{*ab}

^a International Joint Research Center for Yunnan Optoelectronic Materials, School of Materials and Energy, Yunnan University, Kunming 650500, P. R. China.

^b International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650500, P. R. China.

^c Yunnan Provincial Academy of Science and Technology, Kunming 650100, P. R. China

^d Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China.

*:E-mail: <u>xhcheng@ynu.edu.cn</u>, yuyang@ynu.edu.cn

Figure S1. The transmittance spectra of DT film and PEDOT:PSS film on glass.

Figure S2. The images of (a) PEDOT:PSS film and (b) PEDOT:PSS+DT film by polarizing optical microscopy.

Figure S3. (a) AFM morphology and (b) phase images of PEDOT:PSS film. (c) AFM morphology and (d) phase images of PEDOT:PSS+DT film.

Figure S4. XPS spectra in the S 2p regions of PEDOT:PSS film and PEDOT:PSS+DT films.

Figure S5. The J–V curves of devices with different concentrations of DT solution under 100 mW cm⁻² illumination (AM 1.5).

Devices	J _{SC} (mA cm ⁻²)	$V_{OC}(mV)$	FF (%)	PCE (%)
Control	29.59	0.638	58.45	11.03
0.8 mg ml ⁻¹	30.70	0.639	58.84	11.56
1.0 mg ml ⁻¹	31.57	0.637	59.88	12.05
1.1 mg ml ⁻¹	31.94	0.643	61.38	12.61
1.2 mg ml ⁻¹	32.28	0.640	64.11	13.24
1.3 mg ml ⁻¹	31.93	0.638	62.85	12.81
1.4 mg ml ⁻¹	31.50	0.641	61.55	12.42

Table S1

 Photovoltaic parameters of the champion devices with and without adding DT.

Figure S6. The dark J–V curves of devices with different concentrations of DT solution.

Table S2

The n and J_0 of optimized control device and DT-added device.

Samples	n	$J_0(A \text{ cm}^{-2})$
Control device	2.59	5.73×10 ⁻⁴
DT-added device	1.87	8.04×10 ⁻⁶

Figure S7. The Rs and FF of devices with different concentrations of DT solution.

Figure S8. J–V curves of the devices with a configuration of Al/Si/PEDOT:PSS/Ag/DT (W/ coating) and Al/Si/PEDOT:PSS/Ag (W/o coating).

Figure S9. The image of devices without (red line) and with (cyan line) DT coating irradiated under UV lamp. The DT film covered on the square electrode of Ag-grids (yellow line) was erased with THF for testing performance of devices.