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Figure S1. XRD pattern of pure hydrochar. 

Figure S2. XRD pattern of IHSC-900 showing Fe impurities. 
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Figure S3. Raman spectrum of pure hydrochar. 

Figure. S4. EDX spectrum of Ce-IHSC-900. 
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Figure S5. (a) N2 adsorption-desorption plot (b) pore size distribution plot of pure hydrochar.

Figure S6. A close view of the micropore region of prepared hydrochars.
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Figure S7. Contact angle among pure hydrochar and KOH electrolyte
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Figure S8. Electrochemical measurements of ceria modified hydrochar prepared in absence of 
[Bmim][FeCl4]: (a) CV profiles at different scan rates (5-100 mV/s), (b) GCD plots at various 
current densities (0.5-9 A/g), (c) plot showing specific capacitance at different current density, and 
(d) Nyquist plot derived from EIS. 
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Table. S1. Elemental composition of hydrochars. 

EDX Wt.%
Hydrochars

C O N Ce Fe Cl

IHSC-900 74.6 21.22 1.24 - 2.31 0.63

Ce-IHSC-700 51.21 16.43 0.87 29.06 1.95 0.48

Ce-IHSC-800 53.29 14.4 0.92 28.87 1.97 0.55

Ce-IHSC-900 56.69 10.31 1.19 29.13 2.09 0.59
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Table S2. Comparison of specific electrochemical performance of our synthesized hydrochar 
with already reported biomass-derived carbon electrodes.

Material Metal 
Oxide

Carbon 
source

Specific 
capacitance Cyclic stability Reference

Ce-IHSC-900 CeO2 Spruce cone 992.7 F/g at 0.5 
A/g

95.2% after 7000 
cycles This work

ITC-JG-900 - Juggan Grass 336 F/g at 1 A/g 88% after 2000 
cycles [1]

HC-MgO-700 MgO Hazelnut 
shells 323 F/g at 1 A/g 80% after 4000 

cycles [2]

RSN-700 - Rice Straw 400 F/g at 0.1 
A/g

94.6% after 10,000 
cycles [3]

H-SDC-A650 - Soybean 435 F/g at 0.5 
A/g

91% after10,000 
cycles [4]

N-PCNS - Lactose
monohydrate 263 F/g at 1 A/g 96% after 10,000 

cycles [5]

CPA-35-150 NiO-CoO Corncob 208.5 F/g at 1 
A/g

97.2 after 20,000 
cycles [6]

MnO2-
BP@PAni MnO2 Banana Peel 512.8 F/g 1 A/g 86.89% after 10,000 

cycles [7]

BPC/Fe2O3 Fe2O3 Wheat straw 987.9 F/g 1 A/g 82.6% after 3000 
cycles [8]

NiNF@TBC Ni(OH)2 Tea leaves 945 F/g 1 A/g 95% after 10,000 
cycles [9]

NiO@PC NiO Wheat husk 849 F/g 3 A/g 78% after 8000 
cycles [10]
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