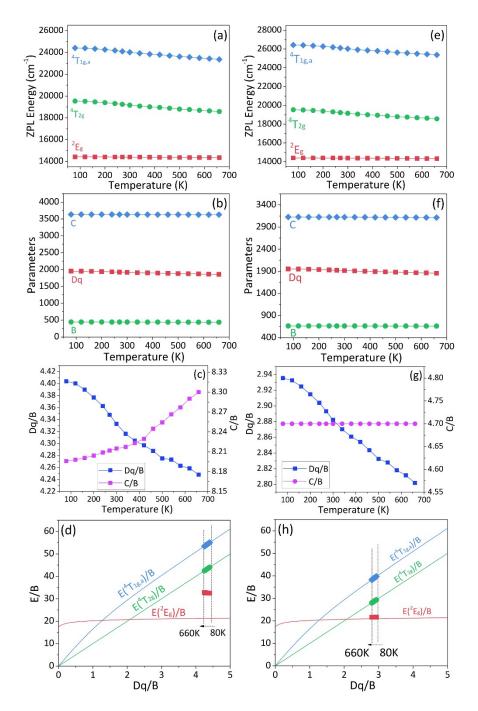
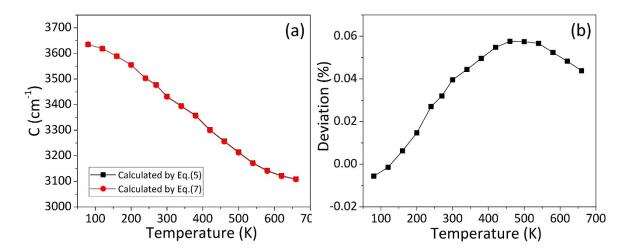
Supplementary Information (SI) for Materials Advances. This journal is © The Royal Society of Chemistry 2025


Supporting Information

High-concentration Mn⁴⁺ doping in boron-modified Ca₁₄Zn₆Al₁₀O₃₅-based phosphors: Decoding superior luminescence performances


Jiquan Huang, *a,b Ting Lv,a Yuqing Lin,a Zhonghua Deng,a Zhuguang Liu,a Wang Guo*a,b

^a Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China. E-mail: hjq@fjirsm.ac.cn (JiQuan Huang), guowang@fjirsm.ac.cn (Wang Guo)

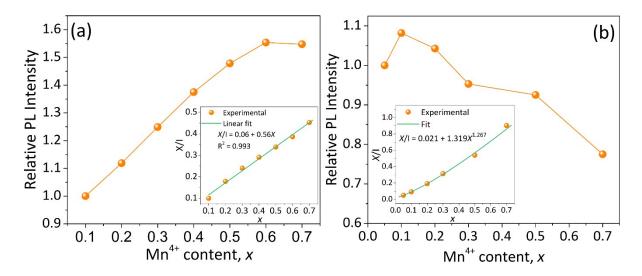

^b Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China

Fig. S1 Temperature-dependence of the corrected (a, e) $E(^2E_g)_{ZPL}$, $E(^4T_{2g})_{ZPL}$, and $E(^4T_{1g,a})_{ZPL}$, (b, f) parameters Dq, B, and C, (c, g) Dq/B and C/B, and (d, h) Excitation/emission energies (divided by B) vs. Dq/B on the Tanabe-Sugano energy diagram. For (a)-(d), the values of $E(^4T_{2g})_{ZPL}$ and $E(^4T_{1g,a})_{ZPL}$ were corrected based on the redshift of the peak position of the corresponding transition bands, and then the values of Dq, B, and C were calculated by Eqs.(3)-(6). For (e)-(h), the values of $E(^4T_{2g})_{ZPL}$ were corrected based on the redshift of the peak position of the $^4T_{2g}$ transition band, and then the values of $E(^4T_{1g,a})_{ZPL}$, Dq, B, and C were calculated from $E(^2E_g)_{ZPL}$ and $E(^4T_{2g})_{ZPL}$ by assuming the Racah parameter ratio of C/B = 4.7, proposed by Adachi (S. Adachi, ECS J. Solid State Sci. Technol., 2020, 9, 046004).

Fig. S2 (a) Temperature-dependent Racah parameter C calculated by formulas (5) and (7), and (b) their divergence [(C5-C7)/C5*100%, where C5 and C7 are the C values calculated by formulas (5) and (7), respectively].

Fig. S3 Dependence of the integrated PL intensity on the Mn-doping concentration for (a) the $Ca_{14}Zn_6Al_{9.85-}$ $2xB_{0.15}Mn_xMg_xO_{35} - 0.42\%$ B₂O₃ phosphors and (b) $Ca_{14}Zn_6Al_{10-2x}Mn_xMg_xO_{35}$ phosphors.

For $Ca_{14}Zn_6Al_{10-2x}Mn_xMg_xO_{35}$ phosphors, the optimal doping concentration of Mn^{4+} is 1%. Beyond this concentration, the PL intensity decreases as the doping concentration increases. However, by introducing B doping and using B_2O_3 as a flux, the PL intensity of the $Ca_{14}Zn_6Al_{9.85-2x}B_{0.15}Mn_xMg_xO_{35} - 0.42\%$ B_2O_3 phosphors increases with Mn^{4+} concentration (x), up to x = 0.6. This observation confirms that B-modification can effectively reduce the crystal defects, thereby suppressing the concentration quenching.