### Tailoring Electromagnetic Interference Shielding Properties in Sandwich Architectures made with Low-Concentration MWCNT-reinforced PDMS

Pavithra Ananthasubramanian<sup>a</sup>, Pritom J. Bora<sup>a</sup>, Chandana Gadadasu<sup>b,c</sup>, Praveen C. Ramamurthy<sup>b,c</sup>, Nagarajan Raghavan<sup>a†</sup>

<sup>a</sup>nano-Macro Reliability Laboratory (nMRL), Engineering and Product Development Pillar (EPD), Singapore University of Technology and Design, 8, Somapah Road, 487372, Singapore.

<sup>b</sup>Organic Nano Electronics Laboratory (ONE Lab), Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India.

<sup>c</sup>Interdisciplinary Centre for Energy Research (ICER), Indian Institute of Science, Bangalore, 560012, India.

† Corresponding Author: <u>nagarajan@sutd.edu.sg</u>

#### **Supplementary Information**

#### S1. Comprehensive measurement of the thickness of the composite samples

A comprehensive physical thickness assessment using a screw gauge across more than 15 different points on the (1+1) LBL samples containing either 1 wt% or 3 wt% MWCNTs is conducted and compared with pristine PDMS samples. The pristine PDMS samples exhibited negligible thickness variation, consistently measuring 200  $\mu$ m in total (i.e., ~100  $\mu$ m per layer), as corroborated by the cross-sectional FESEM image in Figure 5(c) discussed in the manuscript. In contrast, the (1+1) LBL samples showed measurable variation in overall thickness due to the irregularity introduced by the MWCNT layer. These data points, summarized in the table below, reflect the non-uniform yet physically significant presence of the MWCNT network and its impact on the layered architecture.

| Table S1. | Thickness | Measurement | of the | Composite | Samples |
|-----------|-----------|-------------|--------|-----------|---------|
|-----------|-----------|-------------|--------|-----------|---------|

| S.No. | Sample ID | Measurement<br>No. | Total<br>Thickness<br>(µm) | PDMS<br>Thickness<br>(µm) | MWCNT layer<br>thickness (μm) | Mean Total<br>Thickness | Mean<br>MWCNT layer |
|-------|-----------|--------------------|----------------------------|---------------------------|-------------------------------|-------------------------|---------------------|
|       |           |                    | Α                          | В                         | C= A-B                        | C = A - B (µm)          |                     |
| 1     |           | 1                  | 394                        |                           | 194                           |                         |                     |
| 2     |           | 2                  | 396                        |                           | 196                           |                         |                     |
| 3     | 1 wt% (i) | 3                  | 402                        | 200                       | 202                           | (400±10)                | (200±10)            |
| 4     |           | 4                  | 407                        | 1                         | 207                           |                         |                     |
| 5     |           | 5                  | 410                        |                           | 210                           |                         |                     |
| S.No. | Sample ID | Measurement        | Total                      | PDMS                      | MWCNT layer                   | Mean Total              | Mean                |

|    |             | No   | Thickness (um) | Thickness<br>(um) | thickness (μm) | Thickness | MWCNT layer    |
|----|-------------|------|----------------|-------------------|----------------|-----------|----------------|
|    |             | 190. | A              | B                 | C= A-B         | (µm)      | thickness (µm) |
| 6  |             | 1    | 390            |                   | 190            |           |                |
| 7  |             | 2    | 397            |                   | 197            |           |                |
| 8  | 1 wt% (ii)  | 3    | 405            |                   | 205            |           |                |
| 9  |             | 4    | 406            |                   | 206            |           |                |
| 10 |             | 5    | 398            | 200               | 198            | (400±10)  | (200±10)       |
| 11 |             | 1    | 399            | 200               | 199            |           |                |
| 12 |             | 2    | 400            |                   | 200            |           |                |
| 13 | 1 wt% (iii) | 3    | 398            | -                 | 198            |           |                |
| 14 |             | 4    | 401            |                   | 201            |           |                |
| 15 |             | 5    | 397            |                   | 197            |           |                |
| 16 |             | 1    | 701            |                   | 501            |           |                |
| 17 |             | 2    | 693            |                   | 493            |           |                |
| 18 | 3 wt% (i)   | 3    | 709            | -                 | 509            |           |                |
| 19 |             | 4    | 708            |                   | 508            |           |                |
| 20 |             | 5    | 684            |                   | 484            |           |                |
| 21 |             | 1    | 694            |                   | 494            |           |                |
| 22 |             | 2    | 685            |                   | 485            |           |                |
| 23 | 3 wt% (ii)  | 3    | 711            | 200               | 511            | (700±10)  | (500±10)       |
| 24 |             | 4    | 689            |                   | 489            |           |                |
| 25 |             | 5    | 700            |                   | 500            |           |                |
| 26 |             | 1    | 710            |                   | 510            |           |                |
| 27 |             | 2    | 699            |                   | 499            |           |                |
| 28 | 3 wt% (iii) | 3    | 715            |                   | 515            |           |                |
| 29 |             | 4    | 697            |                   | 497            |           |                |
| 30 | ]           | 5    | 705            |                   | 505            |           |                |

## S2. Variability of total shielding effectiveness ( $SE_T$ ) data collected from all the composite samples

The variability across samples shown in Figure 6 of the main manuscript is graphically represented in Figure S1 below.



**Fig. S1.** Range of EMI shielding effectiveness from the triplicate measurements collected from each sample in (a) X-band and (b) Ku-band. The group of data boxed inside blue colored borders is samples with 1 wt% CNT sandwiched between two PDMS layers, and the group of data boxed inside the red-colored border is samples with 3 wt% CNT sandwiched between two PDMS layers. The difference in the performance between the samples from the two different groups is larger than the variability in the performance of the samples within the same group.

As evident from Figure S1. (b), the inter-class variability significantly exceeds the intra-class variability, indicating that the performance variation within samples of the same composition is substantially lower than the variation observed between samples of different compositions. This establishes that the shielding effectiveness of the 3 wt% samples is markedly higher than that of the 1 wt% samples. Consequently, the minor fluctuations in performance within each group do not impact the robustness of the inference that sample composition, rather than sample-to-sample variability, governs the observed differences in shielding effectiveness. Although variability in CNT network density within and across sample groups can impact microstructural features and performance, the compositional parameter—specifically the CNT concentration—emerges as the primary determinant of the observed trends. This study focuses on elucidating the influence of CNT concentration in a layered architecture, while recognizing that network heterogeneity may warrant further dedicated investigation.

# S3. How many MWCNTs are there per unit volume in composites with alternating layers of MWCNT and PMDS (LBL PNCs) and in bulk composites with MWCNT dispersed in the bulk of PDMS (Bulk PNCs)?

S3.1 Calculation of the weight of one MWCNT

The volume of a MWCNT can be calculated using its length (L) and diameter (d) by treating it as a hollow cylinder:

Volume =  $\pi * (d/2)^2 * L$ 

For example, if we consider a multi-walled CNT (MWCNT) with a length of 1  $\mu$ m (1  $\mu$ m = 10<sup>-6</sup> m) and a diameter of 1 nm (1 nm = 10<sup>-9</sup> m), the volume would be:

Volume =  $\pi * (1*(10^{-9})/2)^2 * 1 * 10^{-6}$ 

Volume =  $7.85 * 10^{-25} \text{ m}^3$ 

Calculating the weight from volume and density,

The weight of the CNT can then be calculated by multiplying the volume by the density of the CNT material. The density of multi-walled CNTs (MWCNTs) with a diameter of 1 nm is approximately 1.3 g/cm<sup>3</sup>.

Converting the volume to cm<sup>3</sup> and multiplying by the density:

Weight = Volume \* Density

=  $(7.85 * 10^{-25} \text{ m}^3) * (1.3 \text{ g/cm}^3) * (106 \text{ cm}^3/\text{m}^3)$ 

$$= 1.02 * 10^{-18} \text{ g}$$

Therefore, the weight of a single MWCNT with a length of 1  $\mu$ m and a diameter of 1 nm would be approximately 1.02 x 10<sup>-18</sup> grams.

### S3.2 Calculation of the numbers of MWCNT in one-layer LBL/ Bulk PNCs (0.5 wt%)

Let us consider two comparative composites from LBL and Bulk PNCs with 0.5 wt% MWCNT concentration.

| Sample Name        | Weight of<br>MWCNT/ layer<br>(mg) | Weight of MWCNT/<br>layer (g) | Weight of one<br>MWCNT (g) | No. of<br>MWCNT/ layer |
|--------------------|-----------------------------------|-------------------------------|----------------------------|------------------------|
| LBL PNC (0.5 wt%)  | 1                                 | 0.001                         | 1.02E10 <sup>-18</sup>     | 9.8E+14                |
| Bulk PNC (0.5 wt%) | 1                                 | 0.001                         | 1.02E10 <sup>-18</sup>     | 9.8E+14                |

## S3.3 Calculation of the numbers of MWCNT per unit volume in one layer of LBL vs Bulk PNCs

| Sample Name        | Surface area<br>of sample<br>(m <sup>2</sup> ) | Height of<br>MWCNT<br>dispersed<br>region (m) | Volume of<br>MWCNT<br>dispersed<br>region (m <sup>3</sup> ) | No. of<br>MWCNT/<br>layer | No. MWCNT/<br>unit volume |
|--------------------|------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|---------------------------|---------------------------|
| LBL PNC (0.5 wt%)  | 0.002826                                       | 1E-6                                          | 2.83E-09                                                    | 9.80392E+14               | 3.47E+23                  |
| Bulk PNC (0.5 wt%) | 0.002826                                       | 25E-6                                         | 7.07E-08                                                    | 9.80392E+14               | 1.39E+22                  |

The number of MWCNT in the first 1  $\mu$ m depth in LBL PNC (0.5 wt%) is 25 times more than the same depth in Bulk PNC (0.5 wt%).