Supplementary file

Fabrication of a Polypyrrole-Functionalized Biogenic Mg(OH)₂@MgO Immunosensor, Synthesized Using *Graptopetalum paraguayense* Leaf Extract, for Selective and Efficient Impedimetric Detection of Cholecalciferol (Vit-D₃)

Sarita Sakhtawat¹, Surendra K. Yadav¹ and Jay Singh^{1*}

¹Department of Chemistry, Institute of Sciences, Banaras Hindu University. Varanasi (221005), Utter Pradesh –India

*Corresponding author (Email: jaysingh.chem@bhu.ac.in; jaimnnit@gmail.com; ORCID ID: 0000-0002-3793-0450; Phone: +91-9871766453)

2.7. Characterization techniques

The characterizations of B-Mg(OH)₂@MgO/PPy NCs by ultra-violate (UV) spectroscopy instrument (Agilent Cary 60 UV-vis) confirm through the absorbance, conducting and nonconducting behaviour, Fourier Transform Infrared (FTIR) spectroscopy (modal FTIR 4700 make: JASCO, TOKYO) providing information of available functional groups, X-ray diffraction (XRD) spectroscopy (D8-ADVANCE(eco)/(Bruker)) correct the information of crystalline shape, structure and size was validate by International Centre for Diffraction Data (ICDD). Zeta-DLS instrument Zatasizer Ultra (ZSU5700), Malvern Panalytical (UK) was used to confirm particle size and zeta potential of particles, and a Circular dichroism (CD) spectroscopy instrument JASCO. Modal: CD Polarimeter J-1500 for characterization of PPy coiled at MgO NPs surface. The X-ray photoelectron spectroscopy (XPS) (PHI 5000 Versa Probe (III) (scanning XPS microprobe)) provides information of a particular element and its corresponding binding energy. The Scanning electron microscope (SEM) and Energy Dispersive X-ray (EDX) (Carl Zeiss company instrument; model EVO-18 Research) sample preparation coating through spattering of Au on B-Mg(OH)₂@MgO/PPy NCs and using source laser Lanthanum Hexaboride (LaB₆). Scanning Electron Microscopy (SEM) confirms the morphology, size, and high-quality 3D image, and Energy-dispersive X-ray (EDX) spectroscopy confirms elements presence as well as percentages in the compound. Transmission electron microscopy (TEM) and high resolution (HR-TEM), and selected area electron diffraction (SAED) (Techai G²20 TWIN, FEI company of USA) these are confirming the particle size, shape, d-spacing between lines, crystalline and amorphous nature. The electrochemical analysis of B-Mg(OH)2@MgO/PPy NCs has been done by the instrument electrochemical workstation CorrTest CS studio 350. The electrode functionalization of glass sheets coated with Indium Tin Oxide (ITO) was cut into small pieces (1 cm × 2 cm) and dipped in a mixture of H₂O₂: NH₃: H₂O with a volume ratio of 1:1:5, respectively. After that, the pieces

were baked in an oven for one hour at 80 °C for adherence of the OH groups uniformly on the ITO surfaces. The ITO (Resistivity-20 ohm/sq) electrode is used as the working electrode for the fabrication of a biosensor.

Table S1. Binding Energy data of Mg, O, C and N elements of B-Mg(OH)₂@MgO/PPy NCs.

Elements	Binding energy range (eV)	a plot maximum	b plot maximum	c plot maximum	
		binding energy (eV)	binding energy (eV)	binding energy (eV)	
Mg	96 – 104 eV	101.0 eV	99.9 eV	100.3 eV	
0	526-537 eV	530.1 eV	529.0 eV	529.2 eV	
С	279-295 eV	283.0 eV	282.4 eV	282.6 eV	
N	394-410 eV	390.7 – 399.9 eV	397.4-398.7 Ev	397.6 eV	

Table S2. interference study of different interference towards the $Vit-D_3$ by the fabricated impedance biosensor was summery.

Interference	Current density (j mA.cm ⁻²)	Concentration	% RSD
Vitamin D_3	0.6004	70 nM	0.00 %
Vitamin D_3 + Vitamin B_2	0.5737	70 nM + 5000 nM	4.45 %
<i>Vitamin</i> D_3 + <i>Vitamin</i> B_{12}	0.5906	70 nM + 100 pM	1.64 %
$Vitamin D_3 + Vitamin C$	0.6003	70 nM + 4000 nM	0.03 %
<i>Vitamin</i> D_3 + <i>Urea</i>	0.5975	70 nM + 400000 nM	0.49 %
Vitamin D_3 + Glutamic acid	0.6239	70 nM + 100000 nM	3.91 %
<i>Vitamin</i> D_3 + <i>Glucose</i>	0.6305	70 nM + 500000 nM	5.00 %
<i>Vitamin</i> D_3 + <i>Cholesterol</i>	0.6139	70 nM + 70 mg/dl	2.25 %
Mixture	0.6209		3.40 %

Table S3. tabulated the real blood serum and spiked serum sample study % recovery, determination of concentration and % RSD toward the standard Vit-D₃ concentration was calculated by CV study at SES by fabricated BSA/Ab Vit $-D/B-Mg(OH)_2@MgO/PPy$ NCs /ITO biosensor towards Vit-D₃.

Standard Vit-D ₃	Standard Vit-D ₃ +	Determination	%	% RSD	Standard Vit-D ₃ + BSA	Determination of	% Recovery	% RSD
Current density (j	Blood serum	of	Recovery		Current density (j	concentration of		
mA.cm ⁻²)	Current density (j	concentration			mA.cm ⁻²)	real sample		
	<i>mA.cm</i> ⁻²)	of real sample						
1 nM (0.4492)	1 nM + BS (0.4839)	1.07 nM	107.7 %	7.7 %	1 nM + BSA (0.4741)	1.05 nM	105.5 %	5.5 %
5 nM (0.4547)	5 nM + BS (0.4804)	5.28 nM	105.6 %	5.6 %	5 nM + BSA (0.4804)	5.28 nM	105.6 %	5.6 %
30 nM (0.4569)	30 nM + BS (0.4786)	31.42 nM	104.7 %	4.7 %	30 nM + BSA (0.4860)	31.91 nM	106.3 %	6.3 %
60 nM (0.4740)	60 nM + BS (0.4928)	62.37 nM	103.9 %	3.9 %	60 nM + BSA (0.4889)	61.88 nM	103.1 %	3.1 %
90 nM (0.4813)	90 nM + BS (0.4986)	93.23 nM	103.5 %	3.5 %	90 nM + BSA (0.4932)	92.22 nM	102.4 %	2.4 %
120 nM (0.4896)	120 nM + BS (0.4988)	122.25 nM	101.8 %	1.8 %	120 nM + BSA (0.4982)	122.10 nM	101.7 %	1.7 %
150 nM (0.5017)	150 nM + BS (0.5074)	151.70 nM	101.1 %	1.1 %	150 nM + BSA (0.5023)	150.17 nM	100.1 %	0.1 %
200 nM (0.5095)	200 nM + BS (0.5092)	199.88 nM	99.9	0.1 %	200 nM + BSA (0.5157)	202.43 nM	101.2 %	1.2 %

Figure S.1. CV graph of fabricated BSA/Ab Vit $-D/B-Mg(OH)_2@MgO/PPy NCs /ITO biosensor$ $towards Vit-D₃ study at at <math>[Fe(CN)_6]^{3-/4-}$ containing PBS (5mM, 0.9 % NaCl, pH 5.7) in -0.3 to 0.8 V scan rate 50 mV/sec a) CV graph of stability study, b) CV graph of reusability, c) CV graph of response time, d) CV graph of interference study and e) CV graph of real sample study.

Figure S.2 SEM image a) Bare ITO of 400 nm resolution SEM image, b) B-Mg(OH)2@MgO/ppy-NCs/ITO electrode 1 µm resolution SEM image and c) B-Mg(OH)2@MgO/ppy-NCs/Ab-Vit-D/BSA electrode of 2 µm resolution SEM image,

respectively.

4.6. Competence of the fabricated BSA/Ab Vit $-D/B-Mg(OH)_2@MgO/PPy$ NCs/ITO biosensor towards Vit-D₃

A repeatability and reproducibility study was optimized by CV studies at SES. The repeatability of the fabricated biosensor towards Vit-D₃ was done at 1 nM, 70 nM & 200 nM concentrations of Vit-D₃ until the 10 continuous scans of three electrodes. Figure S.3 a), b) & c) of line + symbol plot of three different electrodes on 1 nM, 70 nM & 200 nM concentration of Vit-D₃ until the 10 continuous scans. While in Figure S.3. d) is a line + symbol plot of

concluding that three electrode studies have retained their repeatability until these scans. Reproducibility of fabricated biosensor towards Vit-D₃ was done at 1 nM, 70 nM & 200 nM concentration of Vit-D₃ has been done for 10 continuous scans, respectively. In Figure S.4 shown Line + Symbol plot of each 1 nM, 70 nM & 200 nM concentration of Vit-D₃ at 10 continuous scans, respectively.

Figure S.3 Plot of reproducibility study in Buffer (pH-5.7) containing $Fe^{+2/+3}$ ion in the potential range (-0.3 to 0.8 V) has been done by cyclic voltammetry (CV). Figure S.3.a), b) & c) line + symbol plot of ITO/B-Mg(OH)2@MgO/ppy NCs/Ab Vit-D/BSA electrode at 1 nM, 70 nM and 200 nM concentration of Vit-D₃ and Figure S.3.d) conclude data of Figure.S.3.a, b & c line + symbol plot of ITO/B-Mg(OH)2@MgO/ppy NCs/Ab Vit-D/BSA electrode at 1 nM, 70 nM and 200 nM concentration of Vit-D₃ and Figure S.3.d) conclude data of Figure.S.3.a, b & c line + symbol plot of ITO/B-Mg(OH)2@MgO/ppy NCs/Ab Vit-D/BSA electrode at 1 nM, 70 nM and 200 nM concentration of Vit-D₃.

Figure S.4. Plot of the Repeatability study in Buffer (pH-5.7) containing $Fe^{+2/+3}$ ions in the potential range (-0.3 to 0.8 V) has been done by cyclic voltammetry (CV). Here, B-Mg(OH)2@MgO/ppy NCs/Ab Vit-D/BSA electrode performances were done by a minimum at least 30 times (low 10 times (1 nM); medium 10 times (70 nM); high 10 times (200 nM) concentration of Vit-D₃.

Data Availability Statement

The data supporting this article have been included as part of the Supplementary Information.

Figure 2: optoelectronic characterization of B-Mg(OH)₂@MgO/PPy NCs a) XRD spectra, i) Non-calcination B-Mg(OH)₂@MgO/PPy NCs, b) UV visible spectra and insert c) Touc's plot of band gap, d) FTIR spectra, e) Raman spectra, f) Zeta potential spectra and g) DLS spectra of B-Mg(OH)₂@MgO/PPy NCs, respectively. (Original origin data file)

Figure 3: XPS spectra of i) B-Mg(OH)₂@MgO/PPy NCs relative binding energy and after immobilization of monoclonal antibody at that surface is ii) Ab Vit-D/Mg(OH)₂@MgO/PPy NCs and iii) final prepared impedance biosensor BSA/ Ab Vit-D/Mg(OH)₂@MgO/PPy NCs respectively. a) survey plot b) binding energy of Mg 2s, c) binding energy of O 1s, d) binding energy of C 1s, e) binding energy of N 1s, respectively i),ii) and iii) and f) CD spectra of i) B-Mg(OH)₂@MgO/PPy NCs and ii) Ab Vit-D/B-Mg(OH)₂@MgO/PPy NCs, respectively.

(a)

(b)

(c)

(d)

(f)

(g)

(h)

Figure 4: TEM images of B-Mg(OH)₂@MgO/PPy NCs a) 200 nm, b) 100 nm, c) 50 nm and d) 10 nm resolution respectively, e) histogram plot for average particle size, f) SEAD pattern, g) SEM image of B-Mg(OH)₂@MgO/PPy NCs of 2 μ m resolution , h) SEM image of B-Mg(OH)₂@MgO/PPy NCs of 1 μ m resolution, and i) EXD spectra in inserted table with element weight% and atomic %, respectively.