Supplementary Information (SI) for Materials Advances. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Vitamin A as a simple, dual-role agent for the band bending-induced

passivation of perovskite solar cells

James C. Solano^a, Itaru Raifuku^{*ab}, Hidenori Kawanishi^a, Yukiharu Uraoka^a

E-mail: ra-itaru@ee.aoyama.ac.jp

^aInformation Device Science Laboratory, Division of Materials Science, Nara Institute of Science

and Technology, Ikoma City, Nara 630-0192, Japan

^bDepartment of Electrical Engineering and Electronics, College of Science and Engineering,

Aoyama Gakuin University, Sagamihara City, Kanagawa 252-5258, Japan

Fig. S1. XRD patterns of perovskite films with 0 (control) 1, 2 and 3 mg/ml of vit A.

Fig. S2. UV-vis absorption spectrum (a) of perovskite films with 0 (control), 1, 2 and 3 mg/ml of vit A and its corresponding Tauc plots and estimated band gap (b).

Fig. S3. Photovoltaic property distributions of perovskite solar cells with 0 (control), 1, 2 and 3 mg/ml of vit A.

Fig. S4. Forward and reverse J–V scans of the best-performing perovskite solar cell devices with 0 (control), 1, 2, and 3 mg/ml of vit A.

Fig. S5. Dark J-V curves of perovskite solar cells with 0 (control), 1, 2 and 3 mg/ml of vit A

Fig. S6. In J vs. V for for perovskite solar cells with 0 (control) of 1, 2, and 3 mg/ml of vit A surface treatments. The straight-line segments mark the voltage window used for linear fitting to extract the saturation current density J₀ by the Shockley-diode method. Detailed values of the fitting parameters are listed in Table S1.

Fig. S7. Scanning electron microscopy (SEM) images of perovskite films with 0 (control), 1, 2 and 3 mg/ml of vit A, and their corresponding grain size distribution. The perovskite film samples were deposited on glass/FTO substrate with SnO₂.

Fig. S8. Band diagram of perovskite films with 0 (control), 1, 2 and 3 mg/ml of vit A (a). Valence band edge values were measured by photoelectron yield spectroscopy (b). Fermi level values of the film surface and the bulk were determined using x-ray photoelectron spectroscopy via surface and depth profile analysis (c-f). The band diagram was completed by using the band gap data in Fig. S2.

Fig. S9. Representative water-contact-angle images of perovskite films with 0 (control), 1, 2, and 3 $\rm mg~ml^{-1}$ of vit A treatment.

Table S1. Linear-fit results for the semi-log dark J–V curves of perovskite solar cells. Data were fitted with the diode equation expressed in logarithmic form:

$$\ln J = \ln J_0 + \frac{q}{nkT}V$$

where $J_0 = e^{Intercept}$ is the saturation current density, n the ideality factor, q the elementary charge, k the Boltzmann constant, and T = 300 K.

Fitted parameter	Control	1 mg mL ⁻¹	2 mg mL ⁻¹	3 mg mL⁻¹
Intercept, In J _o	-22.50379	-24.42761	-24.74803	-24.17098
J₀ (mA cm⁻²)	1.7 × 10 ⁻¹⁰	2.5 × 10 ⁻¹¹	1.8 × 10 ⁻¹¹	3.2 × 10 ^{−11}
Slope, q/nkT	16.1615	17.1795	18.0090	17.5416
X-Intercept† (V)	1.39243	1.42191	1.37420	1.37792
Reduced χ^2	0.00173	0.00558	0.00348	0.00747
R ²	0.99913	0.99544	0.99781	0.99506
Pearson r	0.99956	0.99772	0.99891	0.99753

Table S2. Detailed fitting parameters for the time-resolved photoluminescence measurement of perovskite/vit A/HTL films deposited on glass. Excitation wavelength was 425 nm, with the light source directed onto the glass side of the samples. The fitted equation is

$$I = I_0 + A_1 exp\left(-\frac{(t-t_0)}{\tau_1}\right) + A_2 exp\left(-\frac{(t-t_0)}{\tau_2}\right)$$

Average time constant (τ_{ave}) was calculated by $\tau_{ave} = (A_1 \tau_1^2 + A_2 \tau_2^2)/(A_1 \tau_1 + A_2 \tau_2)$

	Control	1 mg/ml	2 mg/ml	3 mg/ml
<i>A</i> ₁	7673.72	7841.19	4335.03	4160.23
^τ 1 (μs)	0.02996	0.02379	0.01301	0.01618
k _{нт} (s⁻¹)	3.34×10 ⁷	4.20×10 ⁷	7.69×10 ⁷	6.18×10 ⁷
A ₂	2570.39	2846.31	942.97	441.86
^τ ² (μs)	0.12017	0.07784	0.04942	0.07531
$ au_{ave}$ (µs)	0.082	0.053	0.029	0.036
$ au_{ave}$ (ns)	81.7	53.1	29.5	35.7