Supporting Information

Highly Selective Ammonia Sensing at Room Temperature with DC Plasma Modified

MoS₂ Nanoflowers

Anurag Kashyap^a, Bipradip Chakraborty^b, Tonmoi Hazarika^c, Sanjeeb Chouhan^a, Bharat Kakati^c, Hemen Kalita^{a,} *

^a Nanomaterials and Nanoelectronics Laboratory, Department of Physics, Gauhati University,

Guwahati - 781014, Assam, India

^b Department of Applied Science, Gauhati University, Guwahati – 781014, Assam, India

^c META Laboratory, Assam Science and Technology University, Jalukbari, Guwahati –

781013, Assam, India

* Corresponding author Email: <u>hemenkalita@gauhati.ac.in</u>

Raman Spectra of MoS₂ with different nitrogen plasma treatment times:

Figure S1: Raman spectra of the prepared N-MoS₂ and pristine MoS₂ nanosheets.

Figure S1 shows the Raman spectra of MoS_2 nanosheets with nitrogen-treated MoS_2 nanosheets for two different times. N-MoS₂-10 and N-MoS₂-15 represent the MoS₂ samples with 10- and 15-min nitrogen plasma treatment. As shown in the figure, the two characteristic peaks of E^{1}_{2g} and A^{1}_{g} appeared with slightly blue shifting of the peaks which is attributed to nitrogen incorporation on the MoS_2^{-1} .

XRD patterns of bulk MoS₂ and synthesized MoS₂ nanoflower:

Figure S2: XRD patterns of bulk MoS₂ (MoS₂-bulk) and the synthesized MoS₂ nanoflower (MoS₂-NF) structure.

The XRD patterns in Figure S2 indicates single phase MoS_2 nanoflowers with hexagonal crystal structure and no impurities (ICDD card no. 77-1716)². An X-ray pattern of bulk MoS_2 powder was provided for comparison with the conventional XRD pattern of the MoS_2 nanoflower sample. MoS_2 nanoflower sample exhibited peaks at 33.69° and 59.5°, corresponding to the (100) and (110) planes. The broadness of the peak at 14.2° corresponds to (002) planes in comparison to bulk MoS_2 crystals indicate that the produced products are few layered MoS_2 .

Vapour phase detection The concentration of VOCs injected inside the chamber has been calculated using the following Equation ^{3,4}:

$$C_{ppm} = \frac{V_{\mu L} D_{gmL^{-1}}}{M_{g \, mol^{-1}} V_{mL}} \times 2.24 \times 10^7 \qquad \dots S1$$

where C_{ppm} = the required vapor concentration,

 $V_{\mu L}$ = volume of the liquid analyte,

 $D_{gmL^{-1}}$ = density of the liquid,

 V_{mL} = volume of the test chamber

 $M_{g \ mol^{-1}}$ = molecular weight of the liquid analyte.

The subscripts are the corresponding units of the measuring quantities.

Optimised configuration structures of MoS2 and N-MoS2 without S vacancy:

Figure S3: Optimized configuration structures with electron charge density differences (EDDs) ($\Delta\rho$) of (a) MoS₂ and (b) N-MoS₂ system without S vacancy with various VOCs. The yellow colour corresponds to charge accumulations, and the cyan colour corresponds to charge depletion.

Current vs. Voltage plot of MoS2 and N-MoS2 sensors:

Figure S4. Current vs. Voltage (I-V) plot of MoS₂ and N-MoS₂ sensors.

References:

- Wu, R.; Hao, J.; Zheng, S.; Sun, Q.; Wang, T.; Zhang, D.; Zhang, H.; Wang, Y.; Zhou, X. N Dopants Triggered New Active Sites and Fast Charge Transfer in MoS2 Nanosheets for Full Response-Recovery NO2 Detection at Room Temperature. *Appl. Surf. Sci.* 2022, *571*, 151162. https://doi.org/10.1016/J.APSUSC.2021.151162.
- (2) Sathiyan, S.; Ahmad, H.; Chong, W. Y.; Lee, S. H.; Sivabalan, S. Evolution of the Polarizing Effect of MoS2. *IEEE Photonics J.* 2015, 7 (6). https://doi.org/10.1109/JPHOT.2015.2499543.
- (3) Kashyap, A.; Sarma, H.; Chakraborty, B.; Kalita, H. Selective and Sensitive Detection of Ammonia at Room Temperature by the WS2-PANI Nanocomposite on a Flexible Paper-Based Sensor with Cost-Effective Chemically Expanded Graphite Ink Electrodes. ACS Appl. Electron. Mater. 2024. https://doi.org/10.1021/ACSAELM.4C01273/
- (4) Kashyap, A.; Chakraborty, B.; Siddiqui, M. S.; Tyagi, H.; Kalita, H. Selective and Sensitive Detection of Formaldehyde at Room Temperature by Tin Oxide Nanoparticles/Reduced Graphene Oxide Composite. *ACS Appl. Nano Mater.* 2023, 6 (9), 7948–7959. https://doi.org/10.1021/ACSANM.3C01183