Supplementary information

Charge Redistribution Induced by Well-Dispersed Cobalt Oxide Nanoparticles on Co₃(PO₄)₂ Surface Enhances OER Catalytic Activity

Abdelhadi El Jaouhari^{a†}, Jamal Bencaid^{a†}, Anouar Belhboub^b, Mustapha Matrouf^a, Ikram Cheras^a, Jinhua Zhu^c, Bouchaib Manoun^{a,b}, Fouad Ghamouss^{a*}

- ^c Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, China. ^d Laboratory of Radiation-Matter and Instrumentation S3M, FST Settat, Hassan First University, Settat, 6000, Morocco.
- ⁺ The authors have contributed equally to this work.

^{a.} Department of Materials Science, Energy, and Nano-Engineering (MSN) Mohamed VI Polytechnic University, Ben Guerir 43150, Morocco.

^{b.} Centrale Casablanca, Complex Systems and Interactions Research Center, Ville verte, Bouskoura, Casablanca, Morocco.

1. Comparaision of XRD difractogramms of amorphous Co₃(PO₄)₂, amorphous Co₃(PO₄)₂@Co₃O₄, and TGA analysis of Co₃(PO₄)₂.8H₂O:

Figure S1: (a) XRD difractogramms of amorphous $Co_3(PO_4)_2$, amorphous $Co_3(PO_4)_2$ @ Co_3O_4 . (b) TGA analysis of $Co_3(PO_4)_2.8H_2O$.

2. Survey spectra of Co₃(PO₄)₂.8H₂O:

Figure S2: Survey spectra of Co3(PO4)2.8H2O

3. Energy-dispersive X-ray curve of amorphous Co₃(PO₄)₂:

Element	Atomic %	Weight %
Cobalt	13.84	36.04
Oxygen	81.54	57.63
Phosphorus	4.62	6.32

Figure S3: energy-dispersive X-ray curve with the atomic ratio (%) of Co, P and O in the amorphous $Co_3(PO_4)_2$.

4. Electrochemical characterization of amorphous Co₃(PO₄)₂ and crystalline Co₃(PO₄)₂.8H₂O:

Figure S4: Electrochemical characterization of amorphous $Co_3(PO_4)_2$ and crystalline $Co_3(PO_4)_2$.8H₂O: (a) LSV. (b) Tafel slope. (c) Double layer capacitance and electrochemical surface area, and (d) cyclic voltammetry.

5. Electrochemical characterization for amorphous $Co_3(PO_4)_2$ decorated with 5, 10% and 20% with Co_3O_4 :

Figure S5: Electrochemical characterization for amorphous Co₃(PO₄)₂ decorated with 5, 10% and 20% with Co₃O₄: (a) LSV of amorphous Co₃(PO₄)₂ and crystalline Co₃(PO₄)₂.8H₂O. (b) Tafel slope. (c) Double layer capacitance and electrochemical surface area.

6. Electrochemical impedance spectroscopy of the prepard catalysts:

Figure S6: Electrochemical Impedance Spectroscopy (EIS) of different catalysts in 1m KOH over a frequency range of 100 kHz to 10 mHz with an applied AC amplitude of 10 mV

7. DFT density of state details of isolated and Co₃(PO₄)₂ surface adsorbed Co₃O₄ nanoparticle over Co p orbitals.

Figure S7: Partial density of states of isolated and Co3(PO4)2 surface adsorbed Co3O4 nanoparticle over Co p orbitals

8. DFT density of Partial density of states of Co₃O₄ nanoparticle in isolated and 2 nanoparticles configurations over Co p orbitals.

Figure S8: Partial density of states of Co3O4 nanoparticle in isolated and 2 nanoparticles configurations over Co p orbitals