Supplementary Information

Functionalized MIL-125(Ti) Based High-Performance Triboelectric Nanogenerators for Hygiene Monitoring

Anjaly Babu¹, Navaneeth Madathil¹, Rakesh Kumar Rajaboina¹, Hitesh Borkar¹, Kamakshaiah Charyulu Devarayapalli²,
Yogendra Kumar Mishra³, Sugato Hajra⁴, Hoe Joon Kim⁴, Uday Kumar Khanapuram^{1*}, Dae Sung Lee^{2*}

¹Department of Physics, Energy Materials and Devices (EMD) Lab, National Institute of Technology-Warangal-506004, India.

²Department of Environmental Engineering, Kyungpook National University, Buk-gu, Daegu 41566, Republic of Korea.

³Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark

⁴Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988,
South Korea.

SI 1: Fabrication of TENG device

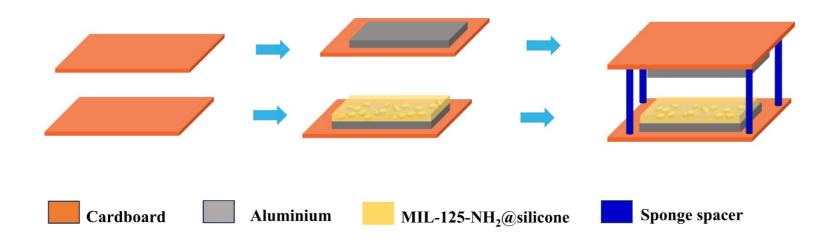


Figure S1: The detailed fabrication steps for the TENG device.

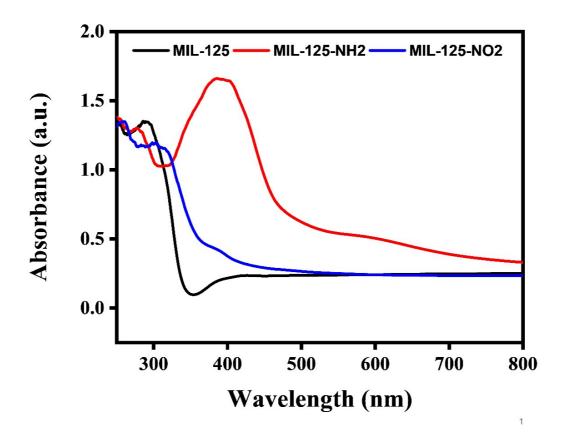
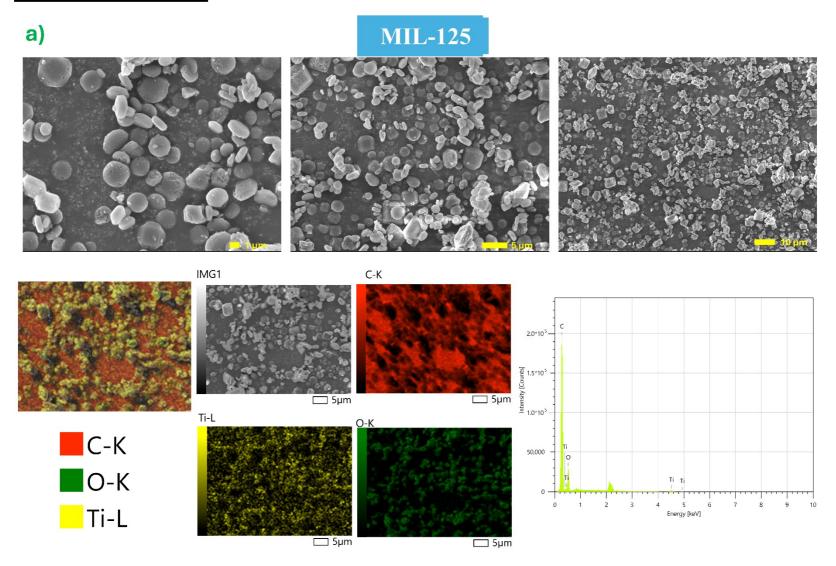
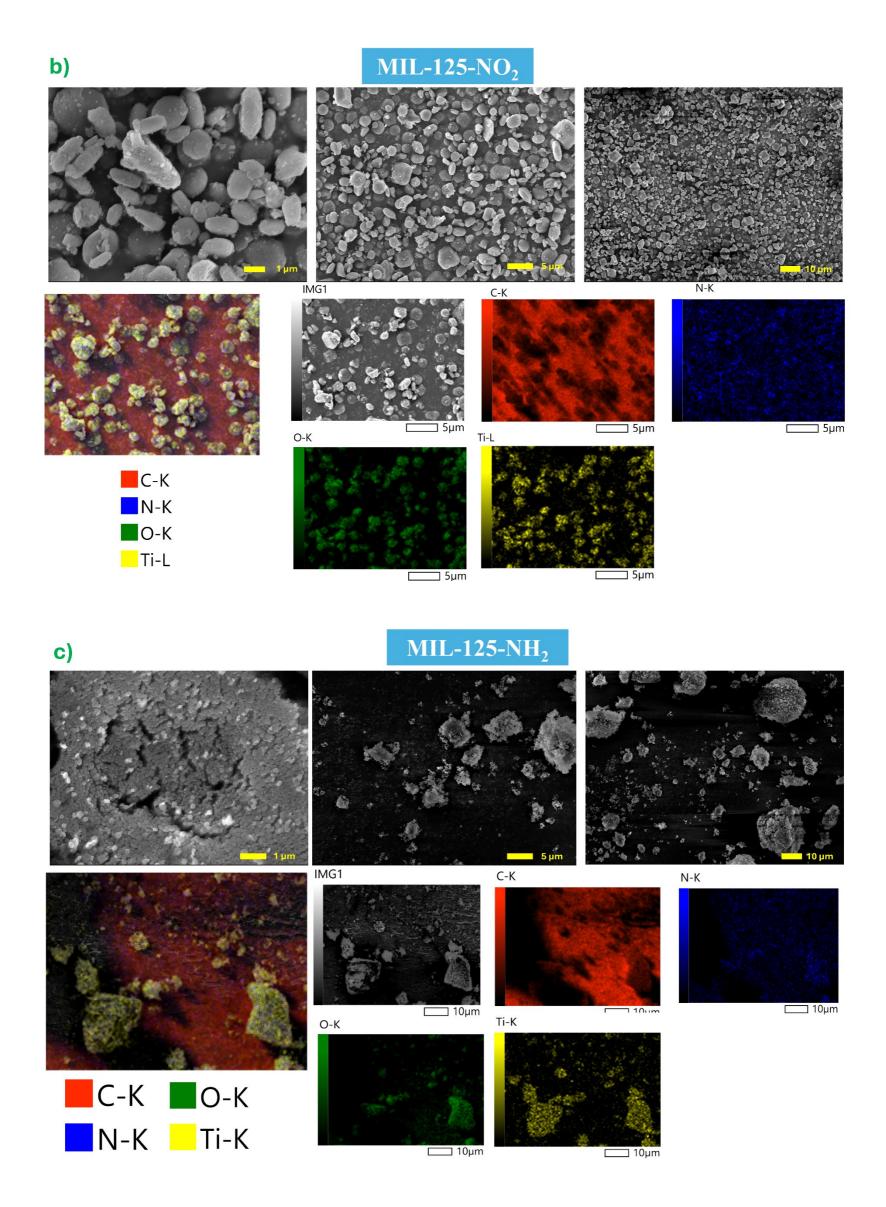
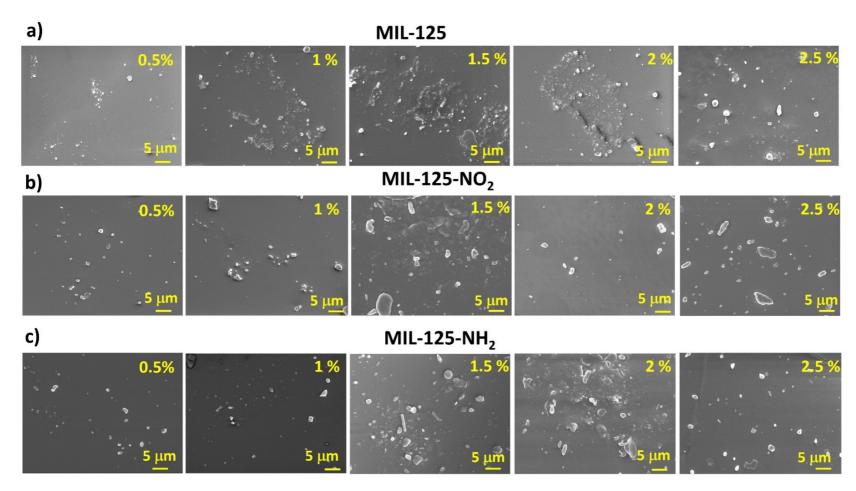
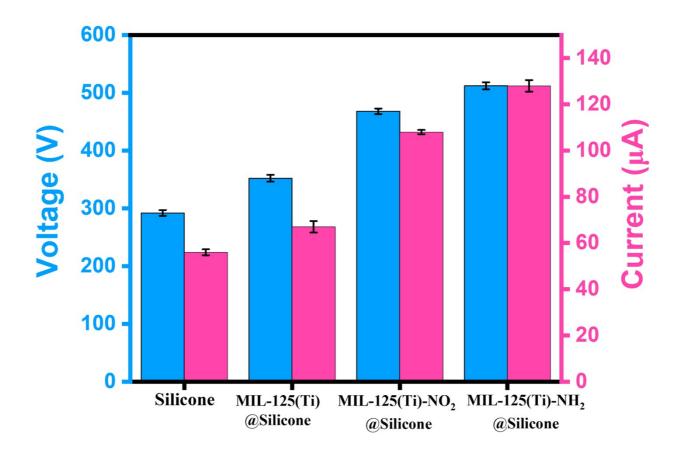



Figure S2: Absorption spectra of MIL-125 and its functional derivatives.

SI 3- FESEM Studies


Figure S3: FESEM and EDAX of (a) MIL-125(Ti), (b) MIL-125-NO₂, and (c) MIL-125-NH₂.

<u>SI 4:</u>

Figure S4. FESEM images of MIL-125(Ti)-X@Silicone composite films at various concentrations ranging from 0.5% to 2.5%: (a) MIL-125; (b) MIL-125-NO₂; (c) MIL-125-NH₂.

SI 5:

Figure S5: Comparison of TENG device output performances for silicone, MIL-125(Ti)@Silicone, functionalised composite films MIL-125(Ti)-NO₂@Silicone and MIL-125(Ti)-NH₂@Silicone.

<u>SI 6:</u>

Silicone MIL-125 MIL-125-NO₂ MIL-125-NH₂ 229 un 1392 261 301 1392

Figure S6: Surface roughness measurements of silicone, MIL-125(Ti), and functionalized composite films MIL-125(Ti)-NO₂ and MIL-125(Ti)-NH₂.