Supplementary Information (SI) for Materials Advances. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Oxygen vacancies induced low overpotentials of Ag/CeO₂ for electrocatalytic evolution of oxygen and hydrogen

Ajit Kumar Dhanka^a, Mayank Tiwari^b, Prashant Kumar Bhartiya^c, Balaram Pani^d Nityananda Agasti^{a,*}, Debabrata Mishra^{#,*}

^a,* Department of Chemistry, University of Delhi, North Campus, Delhi 110007, India

^{b,#} Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India

^c Delhi School of Climate Change and Sustainability, Institution of Eminence (IOE), University of Delhi, Delhi 110007, India

^d Department of Chemistry, Bhashkaracharya College of Applied Sciences, University of Delhi, Dwarka, New Delhi, 110075, India.

SUPPORTING INFORMATION CONTENT

TABLE OF CONTENTS

Sl. No.	Items	Description	Page No.
1	S 1	UV-vis spectra of CeO ₂ and Ag/CeO ₂ nanocomposites.	2
2	S2	Calculated band gap by UV-vis diffuse reflectance spectra (DRS) of CeO_2 and Ag/CeO_2 nanocomposites.	3
3	S 3	Variation in intensity, broadening and shifting of PXRD peaks of CeO_2 and Ag/CeO_2 .	3
4	S 4	Variation in intensity, broadening and shifting of Raman peaks of CeO ₂ and Ag/CeO ₂ and (b) calculated the integrated area of the D peak to the F_{2g} peak for CeO ₂ and Ag/CeO ₂ by I_D/I_{F2g} .	4

5	S 5	The XPS survey of CeO ₂ and Ag/CeO ₂ nanocomposites.	4
6	Tabl e S1	High-resolution Ce 3d XPS results. The listed-out figures are the binding energies (BE) and the area of each peak. The ratio of Ce / Ce ⁺³ + Ce ⁺⁴ was calculated to illustrate the content of oxyge vacancy around Ce ⁺³ sites on the catalyst surface.	
7	S6	High-resolution XPS spectra of Ce 3d comparative study for (a Ag/CeO_2 and (b) CeO_2	
8	S 7	(a) Low resolution TEM image and (b) calculated average size for Ag/CeO_2 , (c) interplanar spaces and (d) average size calculated to individually the Ag and CeO ₂ .	6
9	S8	(a) Nyquist Plot (EIS) for NiF/CeO ₂ and NiF/Ag/CeO ₂ electrodes, measured in 1 M KOH with a 10-mV amplitude over a frequency range of 10 ⁵ –100 Hz (b) Chronoamperometric curve at a constant potential of 1.6 V (vs RHE) for the NiF/Ag/CeO ₂ electrode under illumination.	7

Fig. S1 UV-vis spectra of CeO_2 and Ag/CeO_2 nanocomposites.

Fig. S2 Calculated band gap by UV-vis diffuse reflectance spectra (DRS) of CeO₂ and Ag/CeO₂ nanocomposites.

Fig. S3 Variation in intensity, broadening and shifting of PXRD peaks of CeO_2 and Ag/CeO_2 .

Fig. S4 Variation in intensity, broadening and shifting of Raman peaks of CeO₂ and Ag/CeO₂ and (b) calculated the integrated area of the D peak to the F_{2g} peak for CeO₂ and Ag/CeO₂ by I_D/I_{F2g} ¹.

Fig. S5 The XPS survey of CeO₂ and Ag/CeO₂ nanocomposites.

The total cerium ions integral area of Ce 3d divide by the area of each peak^{2,3}. It is calculated that 17.89% of Ce⁺³ for Ag/CeO₂ and is higher than 13.92% of the CeO₂. That means the addition of Ag causes the increase of oxygen vacancies in CeO₂.

$$[Ce^{+3}] = \frac{(Ce^{+3})Area}{\sum (Ce^{+4} + Ce^{+3})Area} \times 100$$

Peaks assignment	Binding energy (eV)	Ag/CeO ₂ (Area)	CeO ₂ (Area)
U	881-882	13048.3	14323.89
U'	884-885	7781.8	6593.19
U''	887-888	9114.15	10379.9
U'''	897- 898	10917.54	10987.85
V	900-901	5720.20	7015.92
V'	902-903	4407.05	3264.08
V"	905-906	11210.04	11593.14
V'''	915-917	6531.96	6620.91
V' and U'	Total area of Ce ³⁺	12189.05	9857.27
V''', V'', V, U''', U'', U	Total area of Ce ⁴⁺	55941.99	60921.61
	Total of Ce ⁺³ + Ce ⁺⁴	68131.04	70778.88
% of (Ce ⁺³ from	17.89	13.92
$\mathbf{Ce} \; \mathbf{3d} = \mathbf{Ce}$	$e^{+3}/Ce^{+3}+Ce^{+4}$		

Table S1 High-resolution Ce 3d XPS results. The listed-out figures are the binding energies (BE) and the area of each peak. The ratio of $Ce^{+3} / Ce^{+3} + Ce^{+4}$ was calculated to illustrate the content of oxygen vacancy around Ce^{+3} sites on the catalyst surface.

Fig. S6 High-resolution XPS spectra of Ce 3d comparative study for (a) Ag/CeO₂ and (b) CeO₂.

Fig. S7 (a) Low resolution TEM image and (b) calculated average size for Ag/CeO₂, (c) interplanar spaces and (d) average size calculated to individually the Ag and CeO₂.

Fig. **S8a** presents the Nyquist plot obtained from the electrochemical impedance spectroscopy (EIS) of NiF/CeO₂ and NiF/Ag/CeO₂ electrodes, measured in 1 M KOH with a 10-mV amplitude over a frequency range of 10⁵–100 Hz. The solution resistance (R_{ct}) was found to be 6.6 Ω . The charge transfer resistance (R_{ct}) for the NiF/CeO₂ and NiF/Ag-CeO₂ electrodes was calculated to be 5.8 Ω and 3.4 Ω , respectively. The lower charge transfer resistance of the NiF/Ag/CeO₂ electrode compared to the NiF/CeO₂ electrode indicates enhanced charge transfer efficiency in the NiF/Ag/CeO₂ system. **Fig. S8b** shows the current vs time curve for the NiF/Ag/CeO₂ electrode under illumination, demonstrating that the electrode-maintained stability throughout the experiment.

Fig. S8 (a) Nyquist Plot (EIS) for NiF/CeO₂ and NiF/Ag/CeO₂ electrodes, measured in 1 M KOH with a 10-mV amplitude over a frequency range of 10^{5} –100 Hz (b) Chronoamperometric curve at a constant potential of 1.6 V (vs RHE) for the NiF/Ag/CeO₂ electrode under illumination.

2. Sungu Akdogan, C. Z., Gokcal, B., Polat, M., Hamaloglu, K. O., Kip, C., & Tuncel, A. (2022). Porous, Oxygen Vacancy Enhanced CeO_{2-x} Microspheres with Efficient Enzyme-Mimetic and Photothermal Properties. *ACS Sustainable Chemistry & Engineering*, *10*(29), 9492-9505. https://doi.org/10.1021/acssuschemeng.2c01981

3. Liyanage, A. D., Perera, S. D., Tan, K., Chabal, Y., & Balkus Jr, K. J. (2014). Synthesis, characterization, and photocatalytic activity of Y-doped CeO₂ nanorods. *Acs Catalysis*, 4(2), 577-584. https://doi.org/10.1021/cs400889y

^{1.} Jiang, D., Wang, W., Gao, E., Sun, S., & Zhang, L. (2014). Highly selective defect-mediated photochemical CO₂ conversion over fluorite ceria under ambient conditions. *Chemical communications*, *50*(16), 2005-2007. https://doi.org/10.1039/C3CC47806H