Supplementary Information

Sensing of ultra-ppm level NO₂ gas via synergistic effects of Cr Doping and

E-Beam Irradiation in WO₃ nanostructures

Anusha¹, Poornesh P^{1*}, Vikash Chandra Petwal², Vijay Pal Verma², Jishnu Dwivedi²

¹Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, INDIA

²Industrial Accelerator Section, PSIAD, Raja Ramanna Centre for Advanced Technology, Indore 452012, M.P., INDIA

* Corresponding author.

Email addresses: <u>poornesh.p@manipal.edu</u>, <u>poorneshp@gmail.com</u> (Poornesh P)

S1. Structural insights from XRD

Various structural parameters, including crystallite size, strain, and dislocation density, were calculated using the eqns. (S1)-(S3). Scherrer's equation [1] was utilized to determine the crystallite size (D), expressed as follows:

$$\mathbf{D} = \frac{0.9 \,\lambda}{\beta \cos \theta} \tag{S1}$$

 β denotes full-width half maximum (FWHM), θ is angle between the incident X-ray and the crystal plane, and λ is given as 0.154 nm for Cu-K α source.

Dislocation density (δ) and strain (ϵ) [2,3] was computed using the following formulae,

$$\delta = \frac{1}{D^2} \tag{S2}$$

$$\mathcal{E} = \frac{\beta}{4 \tan \theta} \tag{S3}$$

S2. Bandgap studies

Absorbance studies of the Samples A, B and C were performed using UV-Visible spectrophotometer. Fig. S1(a & b) indicates the absorbance spectra in the visible region and

corresponding Tauc's plot. Band gap values of the films were evaluated via Tauc's relation, wherein $(\alpha h v)^2$ is plotted against incident photon energy [4]. Energy band gaps were estimated as 3.22 eV, 3.10 eV and 3.13 eV for WO₃ (Sample A), Cr-WO₃ (Sample B), and EBI Cr-WO₃ (Sample C), films, respectively.

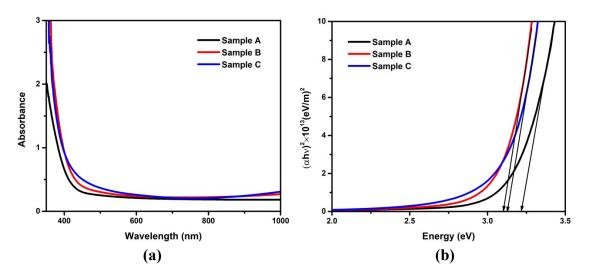


Fig. S1. (a) Absorbance spectra (b) Tauc's plot of Samples A, B and C.

S3. NO₂ sensing measurements

The theoretical limit of detection (LOD) for the EBI Cr-WO₃ sensor was calculated by plotting the sensor response against various NO₂ concentrations using linear regression (y = a + bx) and applying eqn. (S4) [5].

$$LOD = 3\sigma_D/S$$
 (S4)

Where, σ_D is the standard deviation of the y-intercept and s is the slope of the calibration curve. The results indicated that the theoretical limit of detection for the EBI Cr-WO₃ (Sample C) sensor was 0.4 ppm.

Table S1. Comparison of NO₂ sensing data with literature.

Material	Method	Gas Conc. (ppm)	Operating Temperatur e (°C)	Sensor Response	Reference
In ₂ O ₃ decorated WO ₃	Hydrothermal & Thermal evaporation	200	300	28	[6]
Mesoporous WO ₃	One-step precipitation	200	250	99.78	[7]
Ag doped WO ₃	Soft chemical route	100	200	1.5	[8]
WO ₃ nanoflowers	Hydrothermal	100	200	2.25	[9]
Annealed + Laser irradiated WO ₃	RF Sputtering	0.5	200	6.7	[10]
EB irradiated Pd-rGO	Solution processing & Thermal annealing	10	RT	1.05	[11]
EB irradiated Cr-WO ₃	Spray pyrolysis	5	200	3.43	Present work

References

- [1] Scherrer P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgensrahlen"[Determination of the size and internal structure of colloidal particles using X-rays]. Nachr Ges Wiss Goettingen, Math-Phys Kl 1918;26:98–100.
- [2] Bindu P, Thomas S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. Journal of Theoretical and Applied Physics 2014;8:123–34.
- [3] Kumar N, Sidhu GK, Kumar R. Correlation of synthesis parameters to the phase segregation and lattice strain in tungsten oxide nanoparticles. Mater Res Express 2019;6. https://doi.org/10.1088/2053-1591/ab12a5.

- [4] Makuła P, Pacia M, Macyk W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. Journal of Physical Chemistry Letters 2018;9:6814–7. https://doi.org/10.1021/acs.jpclett.8b02892.
- [5] Liu H, Shen W, Chen X. A room temperature operated ammonia gas sensor based on Ag-decorated TiO₂ quantum dot clusters. RSC Adv 2019;9:24519–26. https://doi.org/10.1039/c9ra05439a.
- [6] Nam B, Ko T-K, Hyun S-K, Lee C. NO₂ sensing properties of WO₃-decorated In₂O₃ nanorods and In₂O₃-decorated WO₃ nanorods. Nano Converg 2019;6:40. https://doi.org/10.1186/s40580-019-0205-2.
- [7] Zhang C, Hong X, Jiang C, Luo F, Wan B, Zheng X. A special gas sensor based on mesoporous WO₃ sensing electrode in medium low temperature for NO₂ detection. Mater Lett 2022;306:130927. https://doi.org/10.1016/j.matlet.2021.130927.
- [8] Pandey NK, Roy A, Tiwari K, Mishra A, Rai A, Jayaswal S, Rashmi, Madhvendra, Govindan A. NO₂ sensing studies of WO₃ and Ag doped WO₃ prepared through solgel route. 2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1), 2012, p. 342–5. https://doi.org/10.1109/ISPTS.2012.6260963.
- [9] Hingangavkar GM, Navale YH, Nimbalkar TM, Mulik RN, Patil VB. Hydrothermally engineered WO3 nanoflowers: A selective detection towards toxic NO₂ gas. Sens Actuators B Chem 2022;371:132584. https://doi.org/10.1016/j.snb.2022.132584.
- [10] Zhang C, Van Overschelde O, Boudiba A, Snyders R, Olivier M-G, Debliquy M.
 Improvement of sensing characteristics of radio-frequency sputtered tungsten oxide films through surface modification by laser irradiation. Mater Chem Phys 2012;133:588–91. https://doi.org/10.1016/j.matchemphys.2012.01.116.

[11] Choi MS, Mirzaei A, Bang JH, Oum W, Kim SS, Kim HW. Improvement of NO₂

Sensing Properties in Pd Functionalized Reduced Graphene Oxides by Electron-Beam

Irradiation. Front Mater 2019;6:197. https://doi.org/10.3389/fmats.2019.00197.