

Supporting Information for

In-Situ Synthesis of 3D ZIF-8 on 2D MXene Nanosheets for Efficient Photocatalytic Degradation of Methylene Blue (MB)

**Francis Ashamary,^{a,b#} P. Catherine Neba,^{a,b#} S. Harivarsha,^{a,b#} Atchudan Raji,^{c,d#}
Padmanaban Annamalai,^{e,f} Mohamed Gamal Mohamed,^{g,h#*} Pramod
Kalambate,^{i*} Pandi Muthirulan,^j Shiao-Wei Kuo^{g,k*} and Devaraj Manoj^{a,b*}**

^aDepartment of Chemistry, Karpagam Academy of Higher Education, Coimbatore- 641 021, India.

^bCentre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore- 641021, India

^cDepartment of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India.

^dSchool of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.

^eFacultad de Ingenieria, Universidad Catolica de la Santismia Concepcion, Concepcion- 4090541, Chile

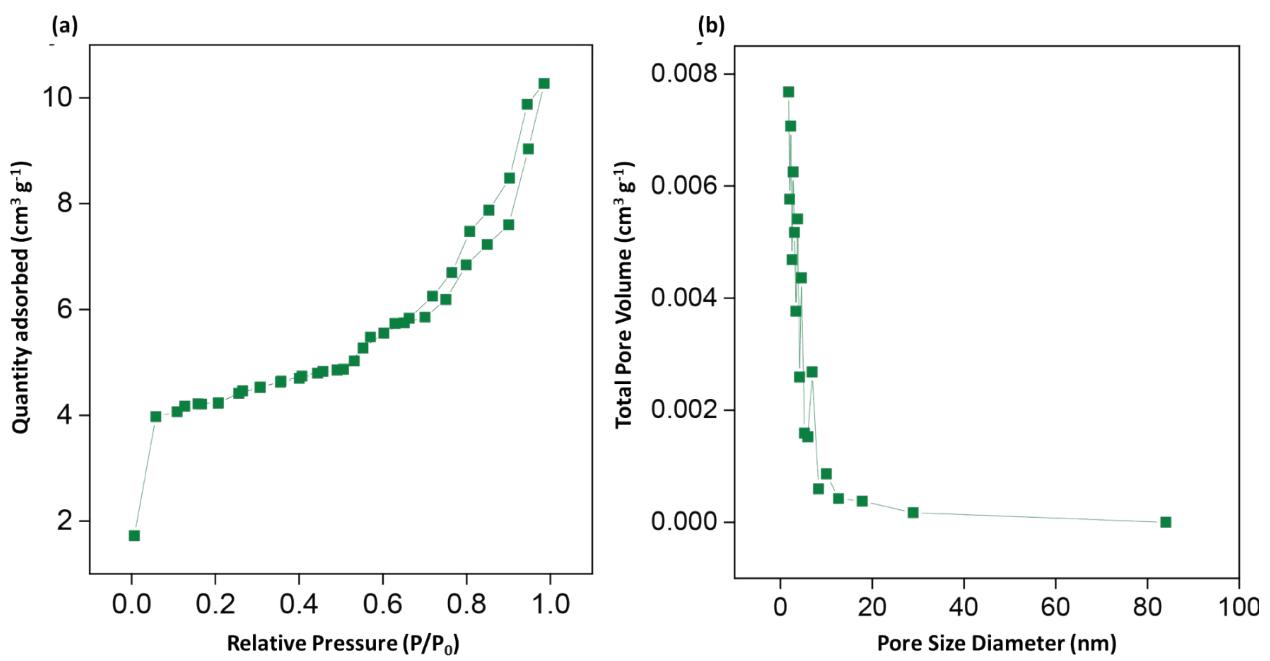
^fDepartment of Physiology, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.

^gDepartment of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.

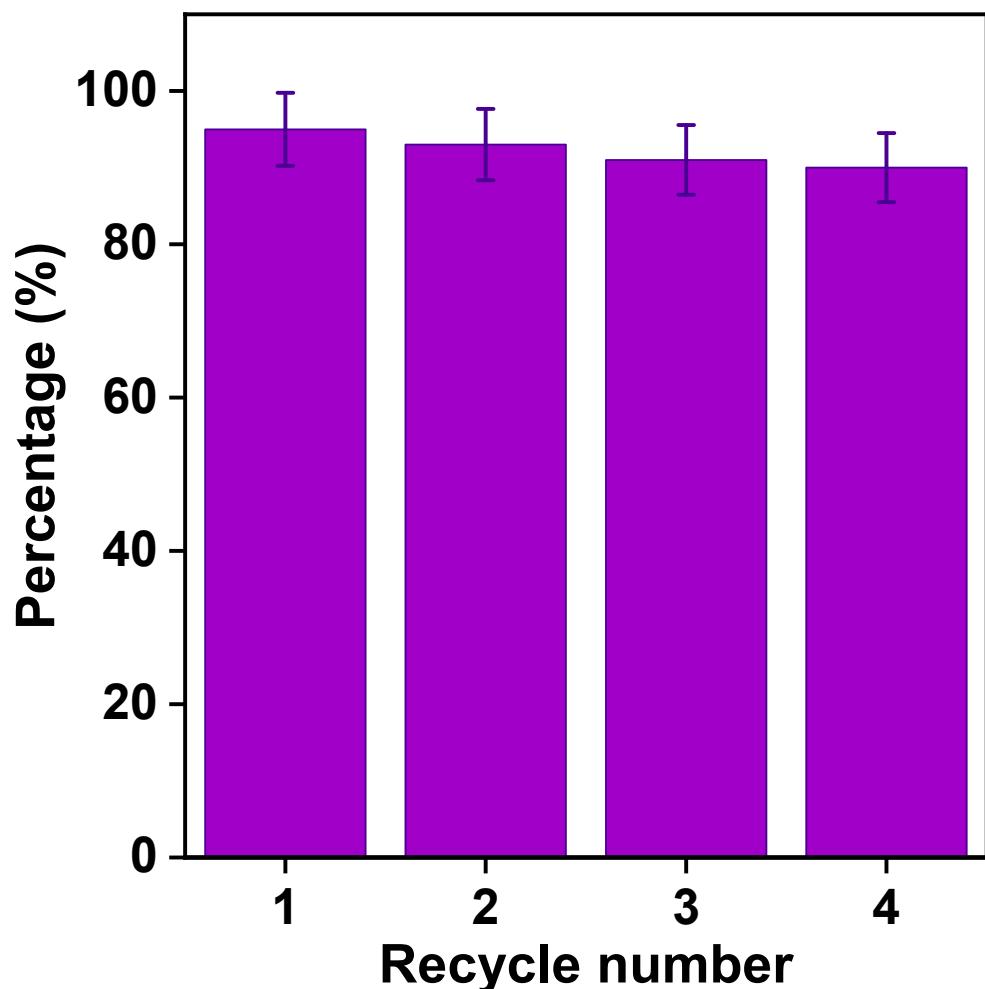
^hDepartment of Chemistry, Faculty of Science, Assiut University, Assiut 71515, Egypt.

ⁱDepartment of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.

^jDepartment of Chemistry, Lekshmipuram College of Arts and Science, Neyyoor-629802, India.


^kDepartment of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.

Corresponding Author: mgamal.eldin34@gmail.com (M. G. Mohamed), pkalambate@uwaterloo.ca (P. K. Kalambate) kuosw@faculty.nsysu.edu.tw (S. W. Kuo) and manojdvrj@gmail.com (D. Manoj, ORCID: 0000-0002-7451-4464)


[#]These authors equally contributed to this work.

Material Characterization

To identify the crystal structure and phase composition of ZIF-8 and ZIF-8@Ti₃C₂ MXene nanosheets, powder X-ray diffraction (XRD; Bruker D8-Adance) was carried out. The morphology of the prepared material was examined using an emission scanning Electron Microscope (FESEM; Carl Zeiss- Sigma 300); which is also assisted with an Energy-Dispersive X-Ray spectrometer (EDS) to carry out elemental and mapping analysis. To investigate the loading of ZIF-8 on Ti₃C₂ nanosheets, Fourier Transform Infrared spectroscopy (FT-IR) analysis was carried out. The optical properties of reflectance, band gap analysis, and absorption were analyzed using Diffuse Reflectance Spectra (DRS; Double Beam Portable Jasco V750) with the help of a UV-Vis spectrophotometer. The photocatalytic performance of MB was investigated using a UV-Vis spectrophotometer within the wavelength range of 400-800 nm.

Figure S1. (a) Nitrogen adsorption/desorption isotherm for ZIF-8@MXene and (b) corresponding pore distribution.

Figure S2. Effect of repeatability of ZIF-8@ Ti_3C_2 MXene as a photocatalyst for degradation of MB.

Table S1. Summarized the photocatalytic performance of ZIF-8@Ti₃C₂ MXene nanosheets for methylene blue (MB) degradation compared to other reported materials.

Catalyst	Dye Degraded	Source of Light	Degradation efficiency	Reference
ZIF-8@Ti₃C₂ MXene	MB	Visible light	95 %	This work
AgNPs@ZIF-8	MB	Visible light	84.18 %	S1
(ZIF)-8-dot	MB	Visible light	87 %	S2
ZIF-8-AgNWs	MB	Visible light	94 %	S3
ZF-8@ZIF-67	MB	Visible light	69 %	S4
Ni-ZIF-8	MB	UV-LED light	93.22 %	S5
ZIF-8/LDO	MB	UV light	58 %	S6

References

[S1] R. Chandra and M. Nath. Controlled synthesis of AgNPs@ZIF-8 composite: Efficient heterogeneous photocatalyst for degradation of methylene blue and congo red. *J. Water Process Eng.* 2020, **36**, 101266. doi.org/10.1016/j.jwpe.2020.101266.

[S2] A. A. Abd El Khalk, M. A. Betiha, A. S. Mansour, M. G. Abd El Wahed and A.M. Al-Sabagh. High degradation of methylene blue using a new nanocomposite based on zeolitic imidazolate Framework-8. *ACS Omega*, 2021, **6**, 26210–26220. doi.org/10.1021/acsomega.1c03195.

[S3] Z. Tian, Z. Hou, X. Yang, L. Liu and W. Zhang. A Shell-Core Structure ZIF-8@AGNWS for enhanced photocatalytic degradation of methylene blue. *Adv. Eng. Mater.* 2023, **25**, 2201710. doi.org/10.1002/adem.202201710.

[S4] E. S. Elmorsy, W. A. Amer, A. Mahrous and M. M. Ayad. Insight into the novel ZIF-8@N-CQDs/ZIF-67 nanocomposite for photocatalytic degradation of methylene blue under visible light irradiation. *Mater. Sci. Eng. B*, 2023, **298**, 116900. doi.org/10.1016/j.mseb.2023.116900.

[S5] L. L. Zulfa, A. R. P. Hidayat, W. P. Utomo, R. Subagyo, E. N. Kusumawati, Y. Kusumawati, D. Hartanto, W. Widyastuti and R. Ediati. Facile synthesis of Ni-ZIF-8 with improved photodegradation performance for methylene blue. *Case Stud. Chem. Environ. Eng.* 2024, **10**, 100828. doi.org/10.1016/j.cscee.2024.100828.

[S6] M. Hu, H. Lou, X. Yan, X. Hu, R. Feng and M. Zhou. In-situ fabrication of ZIF-8 decorated layered double oxides for adsorption and photocatalytic degradation of methylene blue. *Micropor. Mesopor. Mater.* 2018, **271**, 68–72. doi.org/10.1016/j.micromeso.2018.05.048.