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[Bayesian optimization] 

When using a positive integer 𝑀 > 0 to define an 𝑁-dimensional search space as 𝒳 ∈

[0, 𝑀]𝑁, the objective involves find 𝑥∗ = argmaxx∈𝒳𝑓(𝑥), where the objective function 

𝑓: 𝒳 ↦ ℝ takes the maximum value within the search space. The objective function 

assumes a black-box nature, where obtaining function values for any 𝑥 ∈ 𝒳 is possible; 

however, the evaluation cost is high. In addition, computing the gradients of this objective 

function is challenging and not necessarily convex. 

For such an objective function, 𝑓 , Bayesian optimization (BO) [1], [2] has been 

proposed as a technique to determine the optimal solution with minimal trial iterations. 

BO is characterized by a surrogate model based on Gaussian processes (GPs) and an 

acquisition function. Gaussian process regression is a nonparametric method that can 

express nonlinearity and represent estimation uncertainties. A GP is a distribution of 

functions described by the mean 𝑚(⋅) and covariance 𝑘(⋅,⋅). It satisfies the following 

conditions when considering a set of 𝑛 data points, 𝑥1:𝑛, (𝑥𝑖 ∈ 𝒳), 

𝑓(𝑥1:𝑛) ∼ 𝒩(𝑚(𝑥1:𝑛), 𝐾(𝑥1:𝑛, 𝑥1:𝑛)) (S1) 

where 𝐾(𝑥1:𝑛, 𝑥1:𝑛)  represents the variance-covariance matrix, denoted by a kernel 

function 𝑘 such that 𝐾(𝑥1:𝑛, 𝑥1:𝑛)𝑖,𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗). The selection of the kernel function 𝑘 is 

arbitrary and should be chosen appropriately based on prior information regarding the 

smoothness of the function, among other factors. Commonly chosen kernel functions 

include the radial basis function (RBF) and Matern kernels. 

Furthermore, for particular data points 𝑥𝑖 ∈ 𝒳 and corresponding objective function 

values 𝑦𝑖 = 𝑓(𝑥𝑖), the joint distribution at any arbitrary point 𝑥′ ∈ 𝒳 can be expressed as 

follows: 

[
𝑦1:𝑛

𝑥′ ] ∼ 𝒩 ([
𝑚(𝑥1:𝑛)

𝑚′ ] , [
𝐾(𝑥1:𝑛, 𝑥1:𝑛)  𝑘(𝑥1:𝑛, 𝑥′) 

 𝑘(𝑥′, 𝑥1:𝑛)  𝑘(𝑥′, 𝑥′]
]) 

For simplicity, we assume 𝑚(𝑥1:𝑛) = 0  and 𝑚′ = 0 . When given the dataset 

(𝑥1:𝑛, 𝑦1:𝑛), the mean 𝜇 and variance 𝜎2 at any arbitrary point 𝑥′ ∈ 𝒳 can be expressed 

as follows:  

𝜇(𝑥′ ∣ 𝐷𝑡) = 𝑘(𝑥′, 𝑥1:𝑛)𝐾(𝑥1:𝑛, 𝑥1:𝑛)−1𝑦1:𝑛 

𝜎2(𝑥′ ∣ 𝐷𝑡) = 𝑘(𝑥′, 𝑥′) − 𝑘(𝑥′, 𝑥1:𝑛)𝐾(𝑥1:𝑛, 𝑥1:𝑛)−1𝑘(𝑥1:𝑛, 𝑥′) 

As described above, based on the obtained data, the expected value of prediction 𝜇(𝑥′) 

and the uncertainty of the prediction 𝜎2(𝑥′) for any point 𝑥′ can be quantified. 
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In BO, the next set of experimental points is determined to maximize the acquisition 

function 𝑞 based on the mean 𝜇 and variance 𝜎2 obtained from this GP. Subsequently, 

new data points are incorporated to re-estimate the mean and variance, and the process is 

iterated to determine the next set of experimental points. The choice of the acquisition 

function in this process is arbitrary, and several are well-known, such as the expected 

improvement (EI) and upper confidence bound (UCB) [2], [3], [4]. In this study, the EI 

was used as an acquisition function. The EI function quantifies the improvement expected 

at point 𝑥 compared to the maximum objective function value from past data points. 

Considering the dataset obtained until the 𝑡-th experiment 𝐷𝑡 = {(𝑥𝑖, 𝑦𝑖) ∣ 𝑥𝑖 ∈ 𝒳, 𝑦𝑖 =

𝑓(𝑥𝑖}, 𝑖 = 1, … , 𝑛𝑡}, and the GP model 𝑓
^

𝑡 derived from these, the EI function is defined 

as follows: 

𝑞( 𝑥 ∣∣ 𝐷𝑡 ) = 𝔼 (max {0, 𝑓
^

𝑡(𝑥) −  𝑓(𝑥+)} ∣ 𝐷𝑡) 

where 𝑓(𝑥+) = max
𝑥∈𝑥1:𝑛

𝑓(𝑥) represents the maximum objective function value obtained in 

the past 𝑛 experiments. The following experimental points are selected to maximize the 

acquisition function: 

𝑥𝑡+1 = arg max
𝑥∈𝒳

𝑞(𝑥 ∣ 𝐷𝑡) 

The dataset is updated by evaluating the objective function at the selected data points. 

By repeating this process, 𝑥 ∈ 𝒳 that maximizes the objective function 𝑓 can be obtained 

with a small number of trials. Theoretically, it is possible to attain the optimal solution 

by conducting a sufficient number of trials. However, owing to the high cost associated 

with evaluating the objective function, achieving a near-optimal solution within a 

Algorithm S1. Bayesian Optimization 

Require: An objective function 𝑓, a total evaluation budget 𝑇, an initial dataset 𝐷0 =

{(𝑥𝑖 , 𝑦𝑖) ∣ 𝑥𝑖 ∈ 𝒳, 𝑦𝑖 = 𝑓(𝑥𝑖), 𝑖 = 1, … , 𝑛}. 

Ensure: Approximate maximum 𝑥∗ = arg max
𝑥∈𝒳

𝑓(𝑥) 

1: Construct a GP model 𝑓
^

0 with 𝐷0. 

2: for 𝑡 = 1, 2, … , 𝑇 do  

3:     Find 𝑥𝑡 by optimizing the acquisition function 𝑞: 𝑥𝑡 = arg max
𝑥∈𝒳

𝑞 (𝑥 ∣ 𝑓
^

𝑡−1). 

4:     Augment the data 𝐷𝑡 = 𝐷𝑡−1 ∪ {(𝑥𝑡, 𝑓(𝑥𝑡))}. 

5:     Reconstruct the GP model 𝑓
^

𝑡 by updating the kernel hyper-parameters with 𝐷𝑡. 

6: end for 

7: return the maximum data point 𝑥∗ in 𝐷𝑡. 
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minimal number of trials is desirable. Considering the maximum limit of 𝑇  trials, 

Algorithm S1 illustrates the BO algorithm.  
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[Bayesian optimization based on sparse estimation using an ARD kernel]  

In BO, as the dimensionality of the search space increases, the number of iterations 

required to determine the global optimum also increases. Not all explanatory variables 

are equally important in high-dimensional search spaces. For instance, considering a 

search space 𝒳, where a subspace 𝒳⊤ is a subset of 𝒳, and its orthogonal complement is 

denoted as 𝒳⊥ (𝑖. 𝑒. 𝒳 = 𝒳⊥ ⊕ 𝒳⊥) , it is assumed that there exist two functions 

𝑓𝑑: 𝒳⊤ ↦ ℝ and 𝑓𝑠: 𝒳⊥ ↦ ℝ along with a sufficiently small constant 𝜖 > 0, such that: 

𝑓(𝑥) = 𝑓𝑑(𝑥⊤) + 𝜖𝑓𝑠(𝑥⊥) s. t. 𝑥⊤ ∈ 𝒳⊤, 𝑥⊥ ∈ 𝒳⊥ 

where the objective function 𝑓 exhibits only a negligible dependence on 𝑥⊥. Therefore, 

iterating the optimization procedure, while focusing on 𝒳⊤ , can yield a better 

approximate solution with fewer iterations as dim(𝒳) becomes smaller. Consequently, 

the kernel of the GP regression must express that each component of the search space has 

a different impact on the objective function.  

When the objective function is smooth, the RBF kernel is often chosen as the kernel 

for the GP regression. The RBF kernel is defined as follows for any 𝑥, 𝑥′ ∈ 𝒳; 

𝑘RBF(𝑥, 𝑥′ ∣ 𝜎RBF, ℓ) = 𝜎RBF
2 exp (−

(𝑥 − 𝑥′)2

2ℓ2
) 

The RBF kernel has two hyperparameters, 𝜎RBF
2  and ℓ, which denote the covariance and 

lengthscale, respectively. In the GP regression, it is possible to estimate the most probable 

hyperparameters from the data. However, when choosing the RBF kernel, the 

hyperparameters act on the 𝐿2  norm within search spaces of 𝑥 and 𝑥′. Therefore, it is 

impossible to evaluate the importance of each component of the search space separately. 

Applying BO to an RBF kernel may result in experiments that predominantly alter 

unimportant explanatory variables when they are present. When the objective function 

has multiple local solutions, changing the unimportant explanatory variables is unlikely 

to yield an optimal solution because it essentially remains at the same local solution. 

Therefore, it is crucial to quantify the importance of each explanatory variable to obtain 

superior approximate solutions with fewer trial iterations. Focusing solely on important 

explanatory variables can help mitigate unnecessary trials and lead to more efficient 

optimization. 

An automatic relevance-determination (ARD) kernel is proposed as a method to 

quantify the importance of each explanatory variable [5]. 



 6 

𝑘ARD(𝑥, 𝑥′ ∣ 𝜎ARD, ℓ1:𝑁) = 𝜎ARD
2 exp (−

1

2
∑

(𝑥𝑖 − 𝑥𝑖
′)2

ℓ𝑖
2

𝑁

𝑖=1

) 

The ARD kernel encompasses hyperparameters such as the covariance 𝜎ARD
2  and the 

lengthscale for each component of the search space, denoted as ℓ1:𝑁 (𝑖 = 1, … , 𝑁). The 

relevance of each component to the output is expressed by ℓ𝑖, where a larger value of ℓ𝑖 

indicates a smaller influence of the 𝑖-th component on the objective function. Hence, 

estimating this hyperparameter to fit the data facilitates the quantification of the degree 

of influence of each explanatory variable on the objective function.  

Moreover, judging whether the estimated ℓ𝑖 exceeds the threshold value allows us to 

separate the components into high- and low-influence components. Focusing only on 

important explanatory variables with high influence enables the determination of a better 

approximate solution with fewer trials. Values that maximize EI are utilized as important 

explanatory variables. By contrast, for unimportant explanatory variables, the values are 

determined through random sampling from the search space to reduce uncertainty in that 

direction, thereby enhancing the accuracy of the relevance estimation. Algorithm S2 

presents the BO algorithm based on sparse estimation using the ARD kernel. 

 

  

Algorithm S2. Sparse Bayesian Optimization 

Require: An objective function 𝑓, a total evaluation budget 𝑇, an initial dataset 

𝐷0 = {(𝑥𝑖 , 𝑦𝑖) ∣ 𝑥𝑖 ∈ 𝒳, 𝑦𝑖 = 𝑓(𝑥𝑖), 𝑖 = 1, … , 𝑛}, a threshold 𝜖ℓ. 

Ensure: Approximate maximum 𝑥∗ = arg max
𝑥∈𝒳

𝑓(𝑥) 

1: Construct a ARD kernel based GP model 𝑓
^

0 with 𝐷0. 

2: for 𝑡 = 1, 2, … , 𝑇 do  

3:     Let ℓ𝑖 be the lengthscale of ARD kernel for each element (each synthesis 

parameter) 𝑖. 

4:     Partition (𝒳⊤, 𝒳⊥) by thresholding (ℓ𝑖 < 𝜖ℓ)  

        𝒳⊤: dense subspace, 𝒳⊥: sparse subspace, 𝒳 =  𝒳⊤ ⊕ 𝒳⊥ 

5:     Find 𝑥𝑡
⊤ by optimizing the acquisition function 𝑞: 𝑥𝑡

⊤ = arg max
𝑥∈𝒳⊤

𝑞 (𝑥 ∣ 𝑓
^

𝑡−1). 

6:     Choose 𝑥𝑡
⊥ by random sampling in 𝒳⊥. 

7:     𝑥𝑡 = 𝑥𝑡
⊤ + 𝑥𝑡

⊥ 

8:     Augment the data 𝐷𝑡 = 𝐷𝑡−1 ∪ {(𝑥𝑡, 𝑓(𝑥𝑡))}. 

9:     Reconstruct the GP model 𝑓
^

𝑡 by updating the kernel hyper-parameters with 𝐷𝑡. 

10: end for 

11: return the maximum data point 𝑥∗ in 𝐷𝑡. 
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[Quantifying the importance of explanatory variables using a partial dependence plot] 

For a black-box multivariate function 𝑓: ℝ𝑝 ↦ ℝ, Friedman's partial dependence plot 

(PDP) is a method to quantify the average change in function values when altering the 𝑖-

th component [6]. Given a set 𝑆 ⊂ {1, … , 𝑝} and its complement denoted as 𝐶 = 𝑆
−

, the 

partial dependence function 𝑓𝑆 is defined as the mean value when 𝑥𝐶 is varied over the 

neighborhood distribution 𝑑𝑃(𝑥𝐶) with the components of 𝑆 fixed at 𝑥𝑠, and expressed 

as: 

𝑓𝑆 = 𝔼𝑥𝐶
[𝑓(𝑥𝑆, 𝑥𝐶)] = ∫ 𝑓(𝑥𝑆, 𝑥𝐶)𝑑𝑃(𝑥𝐶) 

However, assuming that evaluating the objective function 𝑓 is expensive, instead of 

directly computing 𝑓𝑆, the PDP is estimated using a surrogate model 𝑓
^

 generated by the 

GP. This estimation is based on the data points 𝑥𝐶
𝑖  (𝑖 = 1, … , 𝑛) used to construct the 

surrogate model. The estimation is as follows: 

𝑓𝑆

^

=
1

𝑛
∑ 𝑓

^

(𝑥𝑆, 𝑥𝐶
𝑖 )

𝑛

𝑖=0

 

For simplicity, we assume that the cardinality of set 𝑆 is 1. Consequently, 𝑓
^

𝑆 can be 

regarded as a univariate function. By varying the components under consideration, it is 

possible to understand how the objective function changes, on average. Hence, by 

calculating the difference between the minimum and maximum values of 𝑓
^

𝑆 when the 

components of 𝑆, the average effect 𝑒
^

𝑆  on the objective function can be quantified as 

follows: 

𝑒𝑆

^
= max

𝑥𝑆

𝑓
^

𝑆(𝑥𝑆) − min
𝑥𝑆

𝑓
^

𝑆(𝑥𝑆) 

where 𝑒
^

𝑆 is the average partial dependence effect (APDE). 

When the objective function lacks interactions, explanatory variables can be divided 

into important and unimportant components based on the APDE threshold. The threshold 

corresponds to the extent of change in the objective function when a specific component 

is varied, thus facilitating an intuitive determination of this parameter. However, 

determining the important explanatory variables based solely on the APDE values 

becomes challenging when the objective function involves interactions. For example, 

when the objective function value is large only for a particular subregion 𝑥𝐶 and small 

for other 𝑥𝐶 , the APDE for 𝑥𝐶  is underestimated because of the effect of averaging. 
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Therefore, when the objective functions interact, a small APDE does not indicate that 𝑥𝐶 

is an important component.  
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[Quantifying the importance of explanatory variables using individual conditional 

expectations] 

When the objective function involves interactions, relying solely on the average effect 

obtained through PDP may result in a misunderstanding. Focusing on individual 

conditional expectations (ICE) is recommended in such cases, as is well known in the 

literature [ 7 ]. ICE is denoted as the function 𝑓
^

(𝑥𝑆, 𝑥𝐶
𝑖 )  when the 𝑖 -th instance's 

component 𝑥𝐶
𝑖 , belonging to 𝐶 ⊂ {1, … , 𝑝} are fixed. Let 𝑥𝐶

𝑖  (𝑖 = 1, … , 𝑛) represent the 

experimental data obtained in the 𝑛th trial. Further, ICE indicates the effect of properties 

and yields for 𝑥𝐶
𝑖  by changing the specific synthesis parameters while the remaining 

parameters are constant. The average ICE computed for all instances corresponds to the 

estimated value of PDP 𝑓𝑆

^

. For each 𝑓
^

(𝑥𝑆, 𝑥𝐶
𝑖 ), the effect of the component 𝑆 (denoted as 

𝑒𝑆
𝑖

^

) can be computed as follows: 

𝑒𝑆
𝑖

^

= max
𝑥𝑆

𝑓
^

(𝑥𝑆, 𝑥𝐶
𝑖 ) − min

𝑥𝑆

𝑓
^

(𝑥𝑆, 𝑥𝐶
𝑖 ) 

Furthermore, the effect on the component S can be expressed as: 

𝑒𝑆
∗

^

= max
𝑖∈[1,𝑛]

𝑒𝑆
𝑖

^

 

The effects of the 𝑆  components on the objective function with variation in the 

components of 𝑆  can be quantified. From another perspective, 𝑒𝑆
∗

^

 corresponds to the 

approximation of max
𝑥𝐶

{max
𝑥𝑆

𝑓(𝑥𝑆, 𝑥𝐶) − min
𝑥𝑆

𝑓(𝑥𝑆, 𝑥𝐶)  } . Thus, 𝑒𝑆
∗

^

 represents the 

maximum change in the objective function value when only the component 𝑆 is changed. 

Therefore, 𝑒𝑆
∗

^

 is denoted as the maximum partial dependence effect (MPDE).  

As an example, Fig. S1 illustrates the PDP and ICE for 𝑥1 for two functions: (a) without 

interactions, 𝑦1 = sin(𝑥1) + cos(𝑥2), and (c) with interactions, 𝑦2 = sin(𝑥1) cos(𝑥2). 

Figure S1(a) shows the behavior of 𝑦1 within the range of [0, 2π] for both 𝑥1 and 𝑥2, and 

Fig. S1(b) shows the PDP (red solid line) and ICE (black solid line) of 𝑦1. Among the 

ICE curves, the blue solid line represents max-ICE, which corresponds to the maximum 

difference between the maximum and minimum values of ICE within the range of 𝑥1. 

This difference (the gap in the blue dashed line) represents the 𝑒̂𝑆
∗ (MPDE). In the function 

without interactions, all the ICE curves exhibit the same magnitude of change. 

Consequently, the difference between the maximum and minimum PDP (APDE) values 
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matched that of MPDE. Therefore, the effect on the properties and yields could be 

quantified using the APDE obtained at a low calculation cost. Similarly, Fig. S1(c) 

displays the behavior of 𝑦2 within the range of [0, 2π] for both 𝑥1 and 𝑥2, and Fig. S1(d) 

illustrates the PDP (red solid line) and ICE (black solid line) for 𝑦2. Because 𝑦2 involves 

interactions, the APDE may be very small because of the effects of averaging. In contrast, 

the MPDE indicates that 𝑥1 has a significant impact on 𝑦2.  

 

 

  

 

Fig. S1. (a) Function without interaction 𝑦1 = sin(𝑥1) + cos(𝑥2)，and (b) partial 

dependence plot (PDP) and individual conditional expectation (ICE) for 𝑦1  with 

respect to 𝑥1．(c) Function with interaction 𝑦2 = sin(𝑥1) cos(𝑥2), and (d) PDP and 

ICE for 𝑦2 with respect to 𝑥1. The red, gray, and blue lines represent PDP, ICE, and 

Max-ICE, which corresponds to the maximum difference between the maximum and 

minimum values of ICE within the range of 𝑥1. 
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[Modeling of materials synthesis using isotropic Gaussian functions. 

Materials synthesis encompasses several fields, including the synthesis of inorganic 

and organic compounds. Furthermore, the forms of the materials can vary from powders 

(bulk) to nanoparticles, thin films, and composites of different materials. Synthesis 

parameters, such as temperature, pressure, and composition, change the material 

properties. When a change in synthesis parameters causes a phase transition, materials 

properties can discontinuously change in response to variations in synthesis parameters.  

In contrast, the material properties can continuously change with variations in the 

synthesis parameters, and the material properties exhibits their maximum/minimum 

values at specific parameter values. [8], [9], [10], [11], [12], [13], [14] In the case of 

crystalline materials, a moderately elevated synthesis temperature can improve 

crystallinity, whereas extremely high temperatures can reduce crystallinity owing to 

thermal decomposition. [10] In the synthesis of transparent conductive films such as 

indium tin oxide (ITO), increasing the oxygen partial pressure can enhance the 

crystallinity and improve the carrier mobility. However, it also reduces the number of 

oxygen vacancies, resulting in decreased carrier density. [11] Consequently, there is a 

trade-off between the carrier mobility and carrier density, and the electron conductivity 

reaches its maximum at a specific oxygen partial pressure. In the synthesis of organic 

hole-transport materials for perovskite solar cells, the hole mobility changes with the 

annealing time and dopant concentration, exhibiting peaks in the two-dimensional 

exploration space, including global and local maximum peaks. [8] 

We have already performed simulations of material synthesis with one-, two-, and 

three-dimensional synthesis parameters, assuming that the global and local optimal peaks 

are isotropic.[15],[16] We modeled materials synthesis by functions with local optimal 

peaks generated by combining isotropic Gaussian functions. These studies simulated thin-

film synthesis by sputtering with different process window (Pw) widths, where the 

synthesis parameters are synthesis temperature, oxygen partial pressure, and sputtering 

power, which are important parameters influencing material properties. The process 

window (Pw) represents the range of synthesis conditions that provide desired material 

properties. When Pw is large, determining the optimal synthesis conditions is easy. 

However, in case of small Pw, optimization becomes challenging. In our previous 

research, based on literature values, we set Pw for temperature, oxygen partial pressure, 

and sputtering power at 100 °C, 1.0 × 10−4 Pa， and 10 W, respectively. [10], [14], [17] 
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