SUPPLEMENTARY INFORMATION

Tb³⁺ and Ce³⁺ as a Functional Couple for Enhanced Luminescence in YAG Ceramics for X-Ray Imaging and High-Power White LEDs and Laser Diodes

Anton Markovskyi^{1*}, Warut Chewpraditkul², Przemysław Gołębiewski¹, Paweł Socha¹, Helena Węglarz¹, Agnieszka Szysiak¹, Vitezslav Jary³, R. Kučerková³, Robert Tomala^{4,5}, Akira Yoshikawa⁶, Shunshuke Kurosawa⁶, Ryszard Buczyński¹, Weerapong Chewpraditkul², <u>Karol</u> Bartosiewicz^{3*}

corresponding authors' emails: anton.markovskyi@imif.lukasiewicz.gov.pl, bartosiewicz@fzu.cz

¹Lukasiewicz Research Network - Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668, Warsaw, Poland

²Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi 126 Pracha-uthit, Thung-khru, Bangkok 10140, Thailand

³Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 16200, Prague, Czech Republic

⁴Institute of Low Temperature and Structural Research Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland

⁵Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko g. 24, 03225 Vilnius, Lithuania,

⁶Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 9808577, Japan

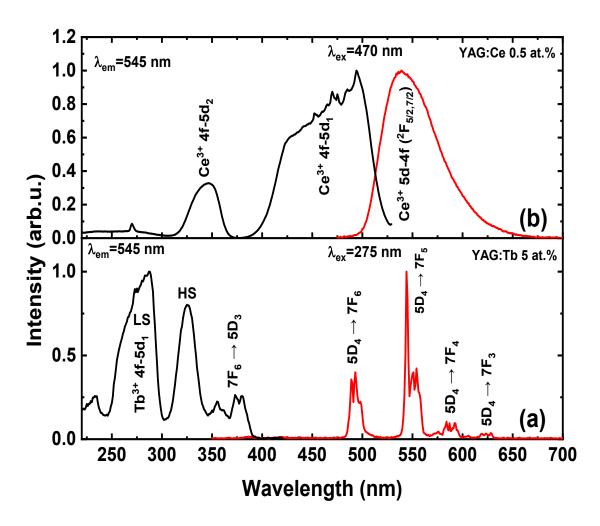


Fig. S1. (a) Photoluminescence excitation (PLE) spectrum monitored at 545 nm and photoluminescence (PL) emission spectrum under 470 nm excitation for Ce³⁺ ions in YAG:Ce ceramics. (b) PLE spectrum monitored at 545 nm and PL emission spectrum under 275 nm excitation for Tb³⁺ ions in YAG:Tb ceramics.

Fig. S1a presents the photoluminescence excitation spectrum monitored at 545 nm and the photoluminescence emission spectrum recorded under 470 nm excitation for YAG:Ce³⁺ (0.5 at.%) ceramics. The PLE spectrum exhibits two prominent excitation bands centered at approximately 360 nm and 460 nm, which are attributed to the $4f \rightarrow 5d_2$ and $4f \rightarrow 5d_1$ electronic transitions of Ce³⁺ ions, respectively. Additionally, the enhanced background observed below 300 nm may be associated with defect-related excitation processes, potentially arising from intrinsic lattice imperfections such as Y_{Al} disloctions, oxygen vacancies, or transitions to higher-lying 5d states of

Ce³⁺. Upon excitation at 470 nm, the PL spectrum displays a broad asymmetric emission band centered at approximately 545 nm, resulting from the $5d_1 \rightarrow 4f$ radiative transitions of Ce³⁺, specifically $5d_1 \rightarrow 4f$ (${}^2F_{5/2}$, ${}^2F_{7/2}$). The broadness of this emission is due to the strong coupling of 5d electrons to lattice vibrations and inhomogeneous broadening caused by site variations within the YAG matrix. Fig. S1b PLE spectrum monitored at 545 nm and the PL emission spectrum recorded under 275 nm excitation for YAG:Tb³⁺ (5 at.%) ceramics. The PLE spectrum reveals broad excitation bands located below 400 nm, which are assigned to spin-allowed $4 \rightarrow 5d_1$ transitions of Tb³⁺ ions. These bands exhibit characteristic splitting into low-spin (LS) and highspin (HS) components due to the influence of crystal field effects on the 5d orbitals. The PL spectrum reveals a series of well-resolved emission lines in the 480–620 nm range, corresponding to the intra-4f transitions from the excited 5D_4 state to the lower-lying 7F_J levels of Tb³⁺ ions. The most intense emission peak is observed at approximately 545 nm, attributed to the ${}^5D_4 \rightarrow {}^7F_5$ transition, which is responsible for the characteristic green luminescence of Tb³⁺.