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1.1 Determination of chitosan’s molecular weight by viscometry

A series of solutions with different concentrations (0.02, 0.04, 0.06, and 0.08 g/dL) were prepared
using a 0.2M sodium acetate and 2% acetic acid mixture. The flow time of each solution (ti), as
well as the solvent alone (tO), was measured using an Ubbelohde viscometer. Relative viscosity (

Mrer), specific viscosity (nsp) and reduced viscosity (nred) were then determined, and the reduced

viscosity was plotted as a function of concentration (€).
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Fig. S1. Determination of molecular weight of chitosan by viscosimetry

_ a
=kx MV, where k and a are constants) was applied in order to

The Mark-Houwink equation (7in
correlate the reduced viscosity at zero concentration with the molecular weight of chitosan. At
25 °C, for the used dilution system and for a DD of 854+3%, k constant was equal to 74-10-3 and a

to 0.76.



1.2 Determination of chitosan’s degree of acetylation by 'H-NMR
The degree of acetylation (DA) of chitosan used in this study was calculated by registering

its "TH-NMR spectrum in deuterium oxide solution (acidified with 5 uLL HCI). The following

equation was applied:

1
§'ICH3

DA(%) = 1
¢ w2 ne)
where Icy; 1s the integral value corresponding to the peak located at 1.98 ppm and Iy;.pe is the

integral value of the signals located between 3.83 and 3.1 ppm
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Fig. S2. '"H-NMR spectrum of chitosan recorded in D,O+HCI



Confirmation of the chemical modification of polysulfone

The successful functionalization of polysulfone with chloromethyl and aldehyde groups,
respectively, was confirmed by "H-NMR and IR spectroscopy. Chloromethylation of PSF took
place mainly at the ortho position of the B ring of PSF and the two protons of this functional group
are observed in the "TH-NMR spectrum as a signal at 4.54 ppm (Figure 2). Moreover, the signals
characteristic to the protons from the substituted ring B appear in the "H-NMR spectra as three
peaks, at 7.37, 7.18-7.16 and 6.85-6.83 ppm, while the signals assigned to the protons from the
unsubstituted A ring appear as two doublets, at 7.24 and 6.95-6.94 ppm. The protons in the
diarylsulfone unit lead to the appearance in 'H-NMR spectrum of two sets of multiplets at 7.88—
7.85 and 7.04—7.00 ppm, respectively, while the ones from the isopropyl group lead to the presence
of a sharp singlet at 1.71 ppm. The degree of substitution (DS) of CMPSF, calculated from 'H-
NMR by applying equation (S1), was found to be 0.9 chloromethyl groups per monomeric unit.
The full assignment of the peaks from the '"H NMR spectrum is given in the synthesis part and is

in agreement with previously reported data [1].

ICHZCl

DS = 2

Iscsp (S1)

where Icioc 1s the integral value corresponding to the (-CH,Cl) peak at 4.54 ppm and Ix¢ ;p is the
integral value of the multiplet at 7.88—7.85, corresponding to the 4 protons from the C and D
aromatic rings, adjacent to the sulfone group.

Chloromethylated polysulfone was further used as a precursor in the Williamson
etherification. In the 'TH-NMR spectrum of FPSF the peaks for newly introduced benzaldehyde
group appear at 9.82-9.81 (-CHO), 7.72-7.67 (H-3E) and 6.851-6.80 (H-2E) ppm. Moreover, as a
result of the substitution of the CI atom with the p-hydroxy benzaldehyde residue, the signal
corresponding to the two protons in the methylene bridge appears in the "H-RMN spectrum of the
formylated polysulfone at 5.06-5.04 ppm because the oxygen atom in the vicinity of the two
protons is more electronegative than chlorine, depleting the C-H bonds in electrons and thus
unshielding the respective protons. Because of this, the protons in CH20 resonate at a higher
frequency, corresponding to a lower chemical shift of 5.06-5.04 ppm. Also, the absence of the
signal at 4.54 ppm in the formylated polysulfone spectrum highlights the total conversion of the



chloromethylated polysulfone into the formylated polysulfone, through the Wailliamson
etherification reaction. The degree of substitution was calculated from 'H-NMR using equation
(S2) and was found to be 0.9 benzaldehyde groups per monomeric units, the same as the DS of
CMPSF:

DS = Lonro- 2

[CHO

(82)

where Icyo0. i the integral value for the two protons of the etheric bridge (5.06-5.04 ppm) and
Icho 1s the integral value for the proton of the aldehyde group (9.82-9.81 ppm).
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Fig. S3. '"H-NMR and *C-NMR spectra of PSF (a, b) CMPSF (c, d) and FPSF (e, f) with the inset
in the "H-NMR spectra highlighting the overlapping of the signal of CH;Cl which altered the value

of the integral of aromatic protons from 3-C and 3-D
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Fig. S4. Comparative 'H-NMR spectra of PSF and CMPSF recorded in a) DMSO dg and b) CDCl;
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Fig. S5. Bidimensional NMR spectra: a) H-H COSY; b) H, C-HMBC; ¢) H, C-HSQC (The presence of

long-range correlation signals between the C atom from CH,Cl (40.9 ppm) and the proton H3’B (7.37 ppm)
in the HMBC spectrum confirm the occurrence of substitution on the B aromatic ring)
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Fig. S6. SEM-EDAX spectra of the investigated samples
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Fig. S§7. DSC curves of several representative samples during a) heating and b) cooling scan
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Fig. §8. AFM images of the studied materials
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Fig. §9. The swelling kinetics of the investigated materials in PBS
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Table S1. The diffraction angle and corresponding d-spacing of the studied materials

Sample diffraction angle (20) / d-spacing (A)
PS1 - 5.06/17.46 - - 18.02/4.97
PS11 - 4.88/18.10 9.5/9.33 - 18.2/4.93
PS1R - 4.76/18.55  9.08/9.75 - 18.5/4.85
CS1 3.32/26.59 - 9.08/9.75  12.32/7.21  19.4/4.63  21.44/4.21
CS11 - 4.58/19.28  9.44/9.38  15.38/5.80 - 20.36/4.42
CS1R - 4.58/19.28  9.38/9.44 14.9/5.98 - 20/4.50
PS2 - 4.76/18.55  8.96/9.88 - 18.2/4.93 -
PS21 - 5.18/17.05  9.32/9.50 - 18.14/4.94 -
PS2R - 4.64/19.03 - 17.78/5.04 - -
CS2 - - - - - 20.12/4.47
CS21 - 4.94/17.88 - - 18.86/4.76 -
CS2R - 5.18/17.05 10.34/8.57 12.86/6.91 19.1/4.70  20.24/4.45
PS-CS-1I 3.2/27.58 4.4/20.07 - 17.9/5.01  18.98/4.73  20.18/4.46
PS-CS-R  3.14/28.11 4.34/20.35 - 19.1/4.70  20.24/4.45
CS-PS-1 - 4.34/20.35  9.32/9.50 - 19.22/4.67 -
CS-PS-R  4.34/20.35 5.06/17.46  9.44/9.38 - 19.16/4.69 -




Table S2. Parameters of thermal degradation: maxima degradation temperatures (Tp.x) and

corresponding mass loss, as well as the ash residue

Sample Thax (°C)  Mass loss (%)  Ash residue (%)

PS1 492 58.93 39.23
PS1I 510 52.87 42.54
PS1IR 516 53.64 43.29
CSl1 291 54.51 34.14
CS1I 500 9.27 35.731
CS1R 588 5.22 41.315
PS2 579 7.67 39.23
PS21 510 46.48 42.54
PS2R 512 46.62 43.29
CS2 300 50.45 24.18
CS21 509 14.19 33.18
CS2R 551 9.80 35.06
PS-CS-1 440 25.37 42.54
PS-CS-R 431 15.45 43.29
CS-PS-1 576 4.97 35.73

CS-PS-R 429 3.65 41.31




Table S3. Roughness average (R.a.) values in nm of the investigated samples, measured on
surfaces of 5 x 5 um? and 10 x 10 um?

Sample R.a. (5x5) R.a. (10x10)
PS1 5.93 6.96
PS11 5.30 6.86
PS1R 16.60 19.32
CS1 6.75 7.37
CS11 33.08 28.65
CSIR 40.13 47.18
PS2 60.06 97.54
PS21 2.35 2.86
PS2R 4.45 5.92
CS2 15.87 -
CS21 68.53 -
CS2R 15.87 -

PS-CS-1 58.93 77.18

PS-CS-R 43.88 71.64

CS-PS-1 34.09 50.14

CS-PS-R 31.17 85.90

- : Could not be recorded due to the porous morphology



Table S4. Surface free energy values ( 7,,) and disperse and polar components ( y¢, »”) for the

investigated coatings in mJ/m?

Sample Ve rh Ve
PS1 3435 3.59 37.94
PSII 37.30 7.03 44.33
PSIR 38.58 5.87 44.45
Cs1 32.00 1.15 33.15
CS1I 46.72 0.86 4731
CSIR 37.88 6.15 44.03
PS2 373 8.47 45.77
PS2I 34.59 3.12 3771
PS2R 39.4 17.62 57.02
CS2 ; - -
CS2I ; ; ;
CS2R ; ; -

PS-CS-I 45.99 0.01 46.00

PS-CS-R 40.83 9 49.83

CS-PS-I 42.94 631 49.25

CS-PS-R 32.89 36.18 69.07




Table S5. Surface parameters of the investigated materials based on the sorption/desorption
isotherms: sorption capacity (% d.b.), average pore size, specific surface area (m?/g) and the

amount of water retained in the monolayer (g/g).

BET Data

Code W (% d.b.) rpm (nm) Area (m?/g)  Monolayer (g/g)
PS1 8.461 0.736 229.632 0.065
PS11 16.682 2.560 130.284 0.037
PS1R 7.902 2.328 67.871 0.019
CS1 55.526 2.397 463.184 0.131
CS1I 39.923 1.891 422.068 0.120
CS1R 38.942 1.623 479.622 0.136
PS2 7.332 2.510 58.405 0.016
PS21 6.481 2.748 47.156 0.013
PS2R 20.426 3.080 132.603 0.037
CS2 45.964 2.381 386.002 0.109
CS21 34.296 2.344 292.562 0.083
CS2R 39.799 2.097 379.454 0.108
PS-CS-I 35.347 3.031 233.226 0.066
PS-CS-R 47.360 1.756 539.137 0.153
CS-PS-1 30.733 2.682 229.162 0.065
CS-PS-R 34.327 2.595 264.465 0.075

References

[1]  A. Warshawsky, N. Kahana, A. Deshe, H.E. Gottlieb, R. Arad-Yellin, Halomethylated polysulfone:
Reactive intermediates to neutral and ionic film-forming polymers, J Polym Sci A Polym Chem 28
(1990) 2885-2905. https://doi.org/10.1002/POLA.1990.080281101.



